|
世界林业研究 2018
中国森林火灾发生规律及预测模型研究DOI: 10.13348/j.cnki.sjlyyj.2018.0054.y Keywords: 森林火灾 灰色模型 Markov链 人工神经网络 ARIMA模型 气象因子 中国 Abstract: 量化分析森林火灾发生规律能为预测和防治森林火灾提供科学依据。文中采用四参数Weibull分布描述了我国森林火灾发生次数和火场面积分布规律,运用Spearman相关系数分析承灾主体因子、灾害管理因子、孕灾环境因子与森林火灾发生次数、面积间关系,基于全国森林火灾数据分别建立灰色系统理论模型、BP人工神经网络模型和时间序列ARIMA模型,并采用Markov随机过程改进已建立模型。结果表明,我国森林火灾发生次数分布呈左偏正态分布,火场面积呈倒J型分布,火灾次数和火场面积分布模型拟合决定系数分别为0.63和0.66;承灾主体、孕灾环境和灾害管理对森林火灾次数和火场面积影响程度依次减小,人工林面积、累年年平均气温、年降雨量平均差值、年最低气温平均日数与森林火灾发生具有明显相关性,影响森林火灾的因子与森林火灾发生次数、火场面积间存在指数型关系;不同模型对森林火灾发生次数和火场面积拟合优度次序为BP模型、GM(1,1)-Markov模型、BP-Markov模型、GM(1,1)模型、ARIMA模型、ARIMA-Markov模型,采用Markov过程能显著改进GM(1,1)预测模型对火灾随机性的预测效果,可以更好地反映森林火灾发生规律
|