全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超声速导弹弹头热应力的有限元分析
Finite Element Analysis of Thermal Stress of Supersonic Missile Warhead

DOI: 10.12677/IJM.2021.101007, PP. 70-80

Keywords: 有限元分析,导弹弹头,气动热,热应力,NASTRAN
Finite Element Analysis
, Missile Warhead, Aerodynamic Heating, Thermal Stress, NASTRAN

Full-Text   Cite this paper   Add to My Lib

Abstract:

超声速导弹飞行时面临严重的气动加热,弹头的热应力分析对其安全性至关重要。本文设计了导弹弹头的几何结构,采用四面体单元对其进行离散;考虑了SiC陶瓷材料性能随温度变化的影响,以4.3 Ma飞行环境的气动热为边界条件,建立了其热应力数学模型,进行了温度场与应力场的计算分析。结果表明,超声速弹头的气动热对结构的应力影响较大,驻点温度快速升高导致局部应力集中。本文研究结果可为超声速弹头的结构设计提供理论和数据参考。
The supersonic missile is faced with severe aerodynamic heating in flight, and the thermal stress analysis of the warhead is very important for its safety. In this paper, the geometric structure of missile warhead is designed, the tetrahedral element is used to discretize, and the material prop-erties of SiC ceramic varying with temperature is considered. The aerodynamic heat of environment when flighting at the speed of 4.3 Ma is used as the boundary condition. The thermal stress mathematical model is established, and the temperature field and stress field are calculated and analyzed. The results show that the aerodynamic heat of supersonic warhead has great influence on the stress and deformation of the structure. And the rapid rise of stagnation point temperature leads to the local stress concentration. This study can provide theoretical and data reference for the structural design of supersonic warhead.

References

[1]  徐世南, 吴催生. 高超声速导弹流场与结构温度场耦合数值分析[J]. 弹箭与制导学报, 2019, 39(5): 121-124+128.
[2]  徐世南, 吴催生. 高超声速导弹多场耦合仿真[J]. 宇航学报, 2019, 40(7): 768-775.
[3]  张超, 刘洪泉, 赵泽华, 王记妃, 胡东阳, 张玺, 翟北北. 高超声速钝锥体热环境仿真计算[J]. 弹箭与制导学报, 2018, 38(6): 43-46.
[4]  高翔. 攻角下高超声速弹头气动热和温度场的计算与研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2015.
[5]  王志超, 张龙, 姚琳. 高速飞行器结构气动热计算与温度场模拟[J]. 四川兵工学报, 2015, 36(11): 49-52.
[6]  李凰立. 再入弹头的气动加热及热响应分析[D]: [硕士学位论文]. 西安: 西北工业大学, 2001.
[7]  王琳. 导弹复合材料头罩设计与结构强度研究[D]: [硕士学位论文]. 北京: 国防科学技术大学, 2012.
[8]  易龙, 孙秦, 彭云. 复合材料头锥结构气动热应力分析方法研究[J]. 机械强度, 2007(4): 686-690.
[9]  胡雨濛. 近空间高超声速气动热的数值模拟[D]: [博士学位论文]. 北京: 北京交通大学, 2018.
[10]  Zander, F., Gollan, R.J., Jacobs, P.A. and Morgan, R.G. (2014) Hypervelocity Shock Standoff on Spheres in Air. Shock Waves, 24, 171-178.
https://doi.org/10.1007/s00193-013-0488-x
[11]  黄强. 磨削过程中硬质合金材料热应力的有限元分析[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2007.
[12]  黄海明, 郭然. 计算固体力学[M]. 北京: 科学出版社, 2014.
[13]  Meng, Y.S., Yan, L., Huang, W. and Tong, X.Y. (2020) Numerical Investigation of the Aerodynamic Characteristics of a Missile. IOP Conference Series: Materials Science and Engineering, 887, Article ID: 012001.
https://doi.org/10.1088/1757-899X/887/1/012001
[14]  王志超. 高速飞行器结构的热响应特性分析研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133