|
基于泛复函的各向异性板裂纹尖端应力场解法
|
Abstract:
本文介绍了泛复变函数的基本理论,利用特定的泛复变量建立求解各向异性材料弹性力学偏微分方程的广义复变函数方法。通过引入泛复变函数和极坐标代换方法解决了含裂纹各向异性板的应力边值问题。推导出I型裂纹端部应力场的实函数通解,有助于改进复合材料断裂力学的基本理论和研究方法。
The basic theory of pan-complex function is introduced, and the generalized complex function method to solve the partial differential equation of elastic mechanics for the anisotropic materials is built by the specific pan-complex variable. The pan-complex function and the polar coordinate re-place method are utilized with the aim of solving the stress boundary problems for the anisotropic plate with a crack. The general solution of Mode I crack-tip stress field is derived with real function variables. It is an aid to improve the basic theory and research method in the fracture mechanics to composite materials.
[1] | 王其申. 由泛复函生成多项式型空间调和函数和球函数[J]. 应用数学和力学, 1997, 18(9): 819-823. |
[2] | 卞星明, 文远芳, 黄斐然. 基于泛复变函数求解Maxwell方程的方法[J]. 高电压技术, 2006, 32(4): 34-36. |
[3] | 熊锡金. 泛系函数论的理法扩变——泛复变函数论: 理念?方法论?定理[J]. 计算机与数字工程, 2013, 41(9): 1391-1394. |
[4] | 李群, 欧卓成, 陈宜亨. 高等断裂力学[M]. 北京: 科学出版社, 2017. |
[5] | Sih, G.C. (1991) Mechanics of Fracture Initiation and Propagation. Kluwer Academic Publishers, Dordrecht.
https://doi.org/10.1007/978-94-011-3734-8 |
[6] | Zhang, H. and Qiao, P. (2019) A State-Based Peridynamic Model for Quantitative Elastic and Fracture Analysis of Orthotropic Materials. Engineering Fracture Mechanics, 206, 147-171.
https://doi.org/10.1016/j.engfracmech.2018.10.003 |
[7] | 贾普荣. 正交异性板裂纹端部应力及变形通解[J]. 力学研究, 2020, 9(2): 70-76.
https://doi.org/10.12677/IJM.2020.92008 |
[8] | 贾普荣. 正交异性材料I + II + III混合型裂纹尖端应力分析[J]. 力学研究, 2020, 9(4): 123-134.
https://doi.org/10.12677/IJM.2020.94014 |