全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶热弹理论下二维纤维增强弹性体的动态响应问题
The Problem of Dynamic Response of Two Dimensional Fiber Reinforced Elastomer under Fractional Thermoelastic Theory

DOI: 10.12677/IJM.2021.102013, PP. 127-142

Keywords: 波传播,旋转效应,分数阶理论,广义热弹性,正则模态分析,Wave Propagation, Rotation Effect, Fractional Order Theory, Generalized Thermoelasticity, Normal Mode Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文内容基于Ezzat型分数阶广义热弹性耦合理论,研究半无限大空间模型下二维纤维增强弹性体受线性I型裂纹作用的热弹性问题。文中给出了分数阶广义热弹性理论下的控制方程,运用正则模态法对控制方程进行求解,得到了半空间无限大纤维增强弹性体中的无量纲应力、位移、温度等物理量的分布规律。重点研究了旋转效应及分数阶参数对各物理量的影响。研究结果表明:纤维增强弹性体在外载荷作用下出现了热弹耦合效应,分数阶参数以及旋转效应显著地影响了各物理量的分布规律。
Based on the Ezzat type fractional generalized thermoelastic coupling theory, the thermoelastic problem of a two-dimensional fiber-reinforced elastic body subjected to a linear mode I crack in a semi infinite space is studied. In this paper, the governing equations under the fractional genera-lized thermoelastic theory are given, and the regularized modal method is used to solve the go-verning equations. The distribution of dimensionless temperature, displacement, stress and other physical quantities in the half space infinite fiber reinforced elastomer is obtained. The influence of fractional order parameters and rotation effect on the physical quantities is mainly studied. The results show that the thermoelastic coupling effect occurs in the fiber reinforced elastomer due to the external load, and the fractional order parameters and rotation effect significantly affect the distribution of physical quantities.

References

[1]  Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983) Stress in Elastic Plates Reinforced by Fibres Lying in Concen-tric Circles. Journal of the Mechanics & Physics of Solids, 31, 25-54.
https://doi.org/10.1016/0022-5096(83)90018-2
[2]  Verma, P.D.S. (1986) Magnetoelastic Shear Waves in Self-Reinforced Bodies. International Journal of Engineering Science, 24, 1067-1073.
https://doi.org/10.1016/0020-7225(86)90002-9
[3]  Chattopadhyay, A. and Choudhury, S. (1995) Magnetoelastic Shear Waves in an Infinite Self-Reinforced Plate. International Journal for Numerical and Analytical Methods in Geomechanics, 19, 289-304.
https://doi.org/10.1002/nag.1610190405
[4]  Sengupta, P.R. and Nath, S. (2001) Surface Waves in Fi-bre-Reinforced Anisotropic Elastic Media. Sadhana, 26, 363-370.
https://doi.org/10.1007/BF02703405
[5]  Sethi, M., Gupta, M., Gupta, K.C., et al. (2012) Surface Waves in Fibre-Reinforced Anisotropic Solid Elastic Media under the Influence of Gravity. Journal of the Mechanical Behaviour of Materials, 20, 81-85.
https://doi.org/10.1515/jmbm.2011.017
[6]  Othman, M.I.A. (2004) Effect of Rotation on Plane Waves in Gene-ralized Thermo-Elasticity with Two Relaxation Times. International Journal of Solids and Structures, 41, 2939-2956.
https://doi.org/10.1016/j.ijsolstr.2004.01.009
[7]  Othman, M.I.A. and Song, Y. (2008) Effect of Rotation on Plane Waves of Generalized Electro-Magneto-Thermovis- coelasticity with Two Relaxation Times. Applied Mathematical Modelling, 32, 811-825.
https://doi.org/10.1016/j.apm.2007.02.025
[8]  Kumar, R. and Kansal, T. (2010) Effect of Rotation on Ray-leigh-Lamb Waves in an Isotropic Generalized Thermoelastic Diffusive Plate. Journal of Applied Mechanics & Technical Physics, 51, 751-761.
https://doi.org/10.1007/s10808-010-0095-x
[9]  Ailawalia, P., Kumar, S. and Khurana, G. (2009) Deformation in a Generalized Thermoelastic Medium with Hydrostatic Initial Stress Subjected to Different Sources. Mechanics and Mechanical Engineering, 13, 5-24.
[10]  Alshaikh and Fatimah (2017) Velocities of Plane Waves in the Generalized Thermo-Piezoelectric Materials under the Effect of Rotation. Journal of Computational and Theoretical Nanoscience, 14, 5952-5956.
https://doi.org/10.1166/jctn.2017.7040
[11]  Sur, A. and Kanoria, M. (2015) Analysis of Thermoelastic Response in a Functionally Graded Infinite Space Subjected to a Mode-I Crack. International Journal of Advances in Applied Mathematics and Mechanics, 3, 33-44.
[12]  Abbas, I.A. and Alzahrani, F.S. (2018) A Green-Naghdi Model in a 2D Problem of a Mode I Crack in an Isotropic Thermoelastic Plate. Physical Mesomechanics, 21, 99-103.
https://doi.org/10.1134/S1029959918020017
[13]  Prasad, R., Das, S. and Mukhopadhyay, S. (2013) A Two-Dimensional Problem of a Mode I Crack in a Type III Thermoelastic Medium. Mathematics & Mechanics of Solids, 18, 506-523.
[14]  刘泽权. 基于分数阶热弹理论的二维多场耦合问题研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133