Molecular Investigation of Genetic Signatures of Selection in Plasmodium falciparum Actin-Binding Protein Coronin, Cysteine Desulfurase, and Plasmepsin 2 Gene in Mbita Field Isolates, Western Kenya
Background: Plasmodium falciparum (Pf) resistance to antimalarial drugs is
a major impediment to malaria control. The Pf.Kelch 13 (PfK13) gene has been largely reported to be associated with
artemisinin resistance. However, recent studies have shown artemisinin
resistance without Kech13 mutations
suggesting the implication of others genes in artemisinin resistance. In this
current study, we focused on mutations in Pf.actin-binding
protein coronin, Pf.cysteinedesulfurase
and Pf.plasmepsin 2 gene, three
putative candidates recently were reported to beinvolved
in artemisinin, lumefantrine and piperaquine resistance respectively. Method: Archived blood samples previously collected from asymptomatic school
children from December 2016 to October 2018 were used in this study. Genomic
DNA was extracted using ISOLATE II Genomic DNA kit. After PCR
amplification, amplicons were purified and sequenced by capillary sequencing.
Reads were analyzed for the identification of point mutations previously
reported to be involved in drug selection. Results: Mutations R100K, and
G50E involved in reduced artemisinin susceptibility were detected in Pfcoronin
References
[1]
World Health Organization (2020) World Malaria Report.
https://www.who.int/publications/i/item/9789240015791
[2]
Kiarie, W.C., Wangai, L., Agola, E., Kimani, F.T. and Hungu, C. (2015) Chloroquine Sensitivity: Diminished Prevalence of Chloroquine-Resistant Gene Marker pfcrt-76 13 Years after Cessation of Chloroquine Use in Msambweni, Kenya. Malaria Journal, 14, 1-7. https://doi.org/10.1186/s12936-015-0850-9
[3]
Zhong, D., Afrane, Y., Githeko, A., Cui, L., Menge, D.M. and Yan, G. (2008) Molecular Epidemiology of Drug-Resistant Malaria in Western Kenya Highlands. BMC Infectious Diseases, 8, 105. https://doi.org/10.1186/1471-2334-8-105
[4]
Ministry of Health (2020) Guidelines for Malaria Epidemic Preparedness and Response in Kenya.
https://www.measureevaluation.org/countries/kenya/kenya-malaria-resources-1/Kenya%20Malaria%20EPR%20Guidelines_Final%20Signed%20-1.pdf/at_download/file
[5]
Sultana, M., Sheikh, N., Mahumud, R.A., Jahir, T. and Islam, Z. (2017) Prevalence and Associated Determinants of Malaria Parasites among Kenyan Children. Tropical Medicine and Health, 45, 25. https://doi.org/10.1186/s41182-017-0066-5
[6]
Touray, A.O., Mobegi, V.A., Wamunyokoli, F. and Herren, J.K. (2020) Diversity and Multiplicity of P. falciparum Infections among Asymptomatic Schoolchildren in Mbita, Western Kenya. Scientific Reports, 10, Article No. 5924.
https://doi.org/10.1038/s41598-020-62819-w
[7]
Kishoyian, G., Njagi, E.N.M., Orinda, G.O. and Kimani, F.T. (2018) Chloroquine Sensitivity and Prevalence of Chloroquine-Resistant Genes pfcrt and pfmdr-1 in Western Kenya after Two Decades of Chloroquine Withdrawal. Annals of Medical and Health Sciences Research, 8, 331-335.
[8]
Kamau, A., Mtanje, G., Mataza, C., Mwambingu, G., Mturi, N., Mohammed, S., Ong’ayo, G., Nyutu, G., Nyaguara, A., Bejon, P. and Snow, R.W. (2020) Malaria Infection, Disease and Mortality among Children and Adults on the Coast of Kenya. Malaria Journal, 19, 210. https://doi.org/10.1186/s12936-020-03286-6
[9]
Huang, F., Shrestha, B., Liu, H., Tang, L.H., Zhou, S., Zhou, X.N., Takala-Harrison, S., Ringwald, P., Nyunt, M.M. and Plowe, C.V. (2020) No Evidence of Amplified Plasmodium falciparum Plasmepsin II Gene Copy Number in an Area with Artemisinin-Resistant Malaria along the China-Myanmar Border. Malaria Journal, 19, Article No. 334. https://doi.org/10.1186/s12936-020-03410-6
[10]
Amato, R., Lim, P., Miotto, O., Amaratunga, C., Dek, D., Pearson, R.D., Almagrogarcia, J. and Neal, A.T. (2016) Genetic Markers Associated with Dihydroartemisinin-Piperaquine Failure in Plasmodium falciparum Malaria in Cambodia: A Genotype-Phenotype Association Study. The Lancet Infectious Diseases, 3099, 1-10.
[11]
Haldar, K., Bhattacharjee, S. and Safeukui, I. (2018) Drug Resistance in Plasmodium. Nature Reviews Microbiology, 16, 156-170.
https://doi.org/10.1038/nrmicro.2017.161
[12]
Kunkel, A., White, M. and Piola, P. (2021) Novel Antimalarial Drug Strategies to Prevent Artemisinin Partner Drug Resistance: A Model-Based Analysis. PLoS Computational Biology, 17, e1008850. https://doi.org/10.1371/journal.pcbi.1008850
[13]
Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., Lwin, K.M., Ariey, F., Hanpithakpong, W., Lee, S.J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S.S., Yeung, S., Singhasivanon, P., White, N.J., et al. (2009) Artemisinin Resistance in Plasmodium falciparum Malaria. New England Journal of Medicine, 361, 455-467. https://doi.org/10.1056/NEJMoa0808859
[14]
Ménard, D., Khim, N., Beghain, J., Adegnika, A.A., Shafiul-Alam, M., Amodu, O., Rahim-Awab, G., Barnadas, C., Berry, A., Boum, Y., Bustos, M.D., Cao, J., Chen, J.-H., Collet, L., Cui, L., Thakur, G.-D., Dieye, A., Djallé, D., Dorkenoo, M.A., Mercereau-Puijalon, O., et al. (2016) A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. New England Journal of Medicine, 374, 2453-2464.
https://doi.org/10.1056/NEJMoa1513137
[15]
Noedl, H., Se, Y., Sriwichai, S., Schaecher, K., Teja-Isavadharm, P., Smith, B., Rutvisuttinunt, W., Bethell, D., Surasri, S., Fukuda, M.M., Socheat, D. and Thap, L.C. (2010) Artemisinin Resistance in Cambodia: A Clinical Trial Designed to Address an emerging Problem in Southeast Asia. Clinical Infectious Diseases, 51, e82-e89.
https://doi.org/10.1086/657120
[16]
Kevin Wamae, D.O., Ndwiga, L. and Victor Osoti, K.M.K. (2019) No Evidence of Plasmodium falciparum k13 Artemisinin Resistance-Conferring Mutations over a 24-Year Analysis in Coastal Kenya but a Near Complete Reversion to Chloroquine Sensitive Parasites. Antimicrobial Agents and Chemotherapy, 63, 1-12.
https://doi.org/10.1128/AAC.01067-19
[17]
Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O.T., Tachibana, S.-I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D.A., Kimura, E., Palacpac, N.M.Q., Odongo-Aginya, E.I., Ogwang, M., Horii, T. and Mita, T. (2021) Evidence of Artemisinin-Resistant Malaria in Africa. New England Journal of Medicine, 385, 1163-1171.
https://doi.org/10.1056/NEJMoa2101746
[18]
Ashley, E.A., Dhorda, M., Fairhurst, R.M., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Anderson, J.M., Mao, S., Sam, B., Sopha, C., Chuor, C.M., Nguon, C., Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K., Chutasmit, K., Suchatsoonthorn, C., Runcharoen, R., Hien, T.T., Thuy-Nhien, N.T., Thanh, N.V., Phu, N.H., Htut, Y., Han, K.-T., Aye, K.H., Mokuolu, O.A., Olaosebikan, R.R., Folaranmi, O.O., Mayxay, M., Khanthavong, M., Hongvanthong, B., Newton, P.N., Onyamboko, M.A., Fanello, C.I., Tshefu, A.K., Mishra, N., Valecha, N., Phyo, A.P., Nosten, F., Yi, P., Tripura, R., Borrmann, S., Bashraheil, M, Peshu, J., Faiz, M.A., Ghose, A., Hossain, M.A., Samad, R., et al. (2014) Spread of Artemisinin Resistance in Plasmodium falciparum Malaria. The New England Journal of Medicine, 371, 411-423.
https://doi.org/10.1056/NEJMoa1314981
[19]
World Health Organization (2018) Artemisinin Resistance and Artemisinin-Based Combination Therapy Efficacy: Status Report. World Health Organization, Geneva.
https://apps.who.int/iris/handle/10665/274362
Duru, V., Witkowski, B. and Ménard, D. (2016) Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine: A Major Challenge for Malaria Elimination in Cambodia. American Journal of Tropical Medicine and Hygiene, 95, 1228-1238. https://doi.org/10.4269/ajtmh.16-0234
[22]
Dwivedi, A., Reynes, C., Kuehn, A., Roche, D.B., Khim, N., Hebrard, M., Milanesi, S., Rivals, E., Frutos, R., Menard, D., Mamoun, C.B., Colinge, J. and Cornillot, E. (2017) Functional Analysis of Plasmodium falciparum Subpopulations Associated with Artemisinin Resistance in Cambodia. Malaria Journal, 16, Article No. 493.
https://doi.org/10.1186/s12936-017-2140-1
[23]
Oboh, M.A., Ndiaye, D., Antony, H.A., Badiane, A.S., Singh, U.S., Ali, N.A. and Das, A. (2018) Status of Artemisinin Resistance in Malaria Parasite Plasmodium falciparum from Molecular Analyses of the Kelch13 Gene in Southwestern Nigeria. BioMed Research International, 2018, Article ID: 2305062.
https://doi.org/10.1155/2018/2305062
[24]
Miotto, O., Amato, R., Ashley, E.A., MacInnis, B., Almagro-Garcia, J., Amara-tunga, C., Lim, P., Mead, D., Oyola, S.O., Dhorda, M., Imwong, M., Woodrow, C., Manske, M., Stalker, J., Drury, E., Campino, S., Amenga-Etego, L., Thanh, T.-N.N., Tran, T., Ringwald, P., Bethell, D., Nosten, F., Pukrittayakamee, S., Chotivanich, K., Chuor, C.M., Nguon, C., Suon, S., Sreng, S., Newton, P.N., Mayxay, M., Khanthavong, M., Hongvanthong, B., Htut, Y., Han, K.T., Kyaw, M.P., Faiz, M.A., Fanello, C.I., Onyamboko, M., Mokuolu, O.A., Jacob, C.G., Takala-Harrison, S., Plowe, C.V., Day, N.P., Dondorp, A.M., Spencer, C.C.A., McVean, G., Fairhurst, R.M., White, N.J. and Kwiatkowski, D.P. (2015) Genetic Architecture of Artemisinin-Resistant Plasmodium falciparum. Nature Genetics, 47, 226-234.
https://doi.org/10.1038/ng.3189
[25]
Mukherjee, A., Bopp, S., Magistrado, P., Wong, W., Daniels, R., Demas, A., Schaffner, S., Amaratunga, C., Lim, P., Dhorda, M., Miotto, O., Woodrow, C., Ashley, E.A., Dondorp, A.M., White, N.J., Wirth, D., Fairhurst, R. and Volkman, S.K. (2017) Artemisinin Resistance without pfkelch13 Mutations in Plasmodium falciparum Isolates from Cambodia. Malaria Journal, 16, Article No. 195.
https://doi.org/10.1186/s12936-017-1845-5
[26]
Demas, A.R., Sharma, A.I., Wong, W., Early, A.M., Redmond, S., Bopp, S. and Wirth, D.F. (2018) Mutations in Plasmodium falciparum Actin-Binding Protein Coronin Confer Reduced Artemisinin Susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 115, 12799-12804.
https://doi.org/10.1073/pnas.1812317115
[27]
Agarwal, A., McMorrow, M., Onyango, P., Otieno, K., Odero, C., Williamson, J., Kariuki, S., Kachur, S. P., Slutsker, L. and Desai, M. (2013) A Randomized Trial of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine in the Treatment of Uncomplicated Malaria among Children in Western Kenya. Malaria Journal, 12, Article No. 254. https://doi.org/10.1186/1475-2875-12-254
[28]
Dorsey, G., Staedke, S., Clark, T.D., Njama-Meya, D., Nzarubara, B., Maiteki-Sebuguzi, C., Dokomajilar, C., Kamya, M.R. and Rosenthal, P.J. (2007) Combination Therapy for Uncomplicated Falciparum Malaria in Ugandan Children: A Randomized Trial. Journal of the American Medical Association, 297, 2210-2219.
https://doi.org/10.1001/jama.297.20.2210
[29]
Gansané, A., Moriarty, L.F., Ménard, D., Yerbanga, I., Ouedraogo, E., Sondo, P., Kinda, R., Tarama, C., Soulama, E., Tapsoba, M., Kangoye, D., Compaore, C.S., Badolo, O., Dao, B., Tchwenko, S., Tinto, H. and Valea, I. (2021) Anti-Malarial Efficacy and Resistance Monitoring of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine Shows Inadequate Efficacy in Children in Burkina Faso, 2017-2018. Malaria Journal, 20, Article No. 48. https://doi.org/10.1186/s12936-021-03585-6
[30]
Wu, Y., Soe, M.T., Aung, P.L., Zhao, L., Zeng, W., Menezes, L., Yang, Z., Kyaw, M.P. and Cui, L. (2020) Efficacy of Artemether-Lumefantrine for Treating Uncomplicated Plasmodium falciparum Cases and Molecular Surveillance of Drug Resistance Genes in Western Myanmar. Malaria Journal, 19, Article No. 304.
https://doi.org/10.1186/s12936-020-03376-5
[31]
Amambua-Ngwa, A., Jeffries, D., Amato, R., Worwui, A., Karim, M., Ceesay, S., Nyang, H., Nwakanma, D., Okebe, J., Kwiatkowski, D., Conway, D.J. and D’Alessandro, U. (2018) Consistent Signatures of Selection from Genomic Analysis of Pairs of Temporal and Spatial Plasmodium falciparum Populations from the Gambia. Scientific Reports, 8, Article No. 9687. https://doi.org/10.1038/s41598-018-28017-5
[32]
Bopp, S., Magistrado, P., Wong, W., Schaffner, S.F., Mukherjee, A., Lim, P., Dhorda, M., Amaratunga, C., Woodrow, C.J., Ashley, E.A., White, N.J., Dondorp, A.M., Fairhurst, R.M., Ariey, F., Menard, D., Wirth, D.F. and Volkman, S.K. (2018) Plasmepsin II-III Copy Number Accounts for Bimodal Piperaquine Resistance among Cambodian Plasmodium falciparum. Nature Communications, 9, Article No. 1769.
https://doi.org/10.1038/s41467-018-04104-z
[33]
Foguim Tsombeng, F., Gendrot, M., Robert, M.G., Madamet, M. and Pradines, B. (2019) Are k13 and Plasmepsin II Genes, Involved in Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine in Southeast Asia, Reliable to Monitor Resistance Surveillance in Africa? Malaria Journal, 18, Article No. 285.
https://doi.org/10.1186/s12936-019-2916-6
[34]
Qidwai, T. (2020) Exploration of Copy Number Variation in Genes Related to Anti-Malarial Drug Resistance in Plasmodium falciparum. Gene, 736, Article ID: 144414.
https://doi.org/10.1016/j.gene.2020.144414
[35]
Eastman, R.T., Dharia, N.V., Winzeler, E.A. and Fidock, D.A. (2011) Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured Plasmodium falciparum Parasites. Antimicrobial Agents and Chemotherapy, 55, 3908-3916. https://doi.org/10.1128/AAC.01793-10
[36]
Witkowski, B., Duru, V., Khim, N., Ross, L.S., Saintpierre, B., Beghain, J., Chy, S., Kim, S., Ke, S., Kloeung, N., Eam, R., Khean, C., Ken, M., Loch, K., Bouillon, A., Domergue, A., Ma, L., Bouchier, C., Leang, R., Ménard, D., et al. (2017) A Surrogate Marker of Piperaquine-Resistant Plasmodium falciparum Malaria: A Phenotype-Genotype Association Study. The Lancet Infectious Diseases, 17, 174-183.
https://doi.org/10.1016/S1473-3099(16)30415-7
[37]
Ogutu, B.R., Onyango, K.O., Koskei, N., Omondi, E.K., Ongecha, J.M., Otieno, G.A., Juma, E., et al. (2014) Efficacy and Safety of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine in the Treatment of Uncomplicated Plasmodium falciparum Malaria in Kenyan Children Aged Less than Five Years: Results of an Open-Label, Randomized, Single-Centre Study. Malaria Journal, 13, Article No. 33.
https://doi.org/10.1186/1475-2875-13-33
[38]
Wanyua, S., Ndemwa, M., Goto, K., Tanaka, J., K’Opiyo, J., Okumu, S., Diela, P., Kaneko, S., Karama, M., Ichinose, Y. and Shimada, M. (2013) Profile: The Mbita Health and Demographic Surveillance System. International Journal of Epidemiology, 42, 1678-1685. https://doi.org/10.1093/ije/dyt180
[39]
Kaga, W., Gitaka, J., Chim, W.C., James, K. and Zulkarnain, M. (2019) Malaria Resurgence after Significant Reduction by Mass Drug Administration on Ngodhe Island. Scientific Reports, 9, Article No. 19060.
https://doi.org/10.1038/s41598-019-55437-8
[40]
Omondi, R. and Kaman, L. (2018) Reduced Plasmodium Infection in Primary School Children Following Universal Distribution of Insecticide Treated Bed Nets in Kasipul Homa-Bay County Kenya. International Journal of Sciences: Basic and Applied Research, 38, 26-36. https://www.researchgate.net/publication/326368468
[41]
Minakawa, N., Dida, G.O., Sonye, G.O., Futami, K. and Njenga, S.M. (2012) Malaria Vectors in Lake Victoria and Adjacent Habitats in Western Kenya. PLoS ONE, 7, e32725. https://doi.org/10.1371/journal.pone.0032725
[42]
Noor, A.M., Gething, P.W., Alegana, V.A., Patil, A.P., Hay, S.I., Muchiri, E., Juma, E. and Snow, R.W. (2009) The Risks of Malaria Infection in Kenya in 2009. BMC Infectious Diseases, 9, Article No. 180. https://doi.org/10.1186/1471-2334-9-180
[43]
Okoyo, C., Mwandawiro, C., Kihara, J., Simiyu, E., Gitonga, C.W., Noor, A.M., Snow, R.W., et al. (2015) Comparing Insecticide-Treated Bed Net Use to Plasmodium falciparum Infection among Schoolchildren Living near Lake Victoria, Kenya. Malaria Journal, 14, Article No. 515. https://doi.org/10.1186/s12936-015-1031-6
[44]
Honnay, O. (2013) Genetic Drift. In: Brenner’s Encyclopedia of Genetics, Second Edition, Academic Press, San Diego, 251-253.
https://doi.org/10.1016/B978-0-12-374984-0.00616-1
[45]
Tardieux, I., Liu, X., Poupel, O., Parzy, D., Dehoux, P. and Langsley, G. (1998) A Plasmodium falciparum Novel Gene Encoding a Coronin-Like Protein Which Associates with Actin Filaments. FEBS Letters, 441, 251-256.
https://doi.org/10.1016/S0014-5793(98)01557-9
[46]
Bane, K.S., Lepper, S., Kehrer, J., Sattler, J.M., Singer, M., Reinig, M., Klug, D., Heiss, K., Baum, J., Mueller, A.K. and Frischknecht, F. (2016) The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites. PLoS Pathogens, 12, e1005710. https://doi.org/10.1371/journal.ppat.1005710
[47]
Olshina, M.A., Angrisano, F., Marapana, D.S., Riglar, D.T., Bane, K., Wong, W., Catimel, B., Yin, M.X., Holmes, A.B., Frischknecht, F., Kovar, D.R. and Baum, J. (2015) Plasmodium falciparum Coronin Organizes Arrays of Parallel Actin Filaments Potentially Guiding Directional Motility in Invasive Malaria Parasites. Malaria Journal, 14, Article No. 280. https://doi.org/10.1186/s12936-015-0801-5
[48]
Achieng, A.O., Muiruri, P., Ingasia, L.A., Opot, B.H., Juma, D.W., Yeda, R., Ngalah, B.S., Ogutu, B.R., Andagalu, B., Akala, H.M. and Kamau, E. (2015) Temporal Trends in Prevalence of Plasmodium falciparum Molecular Markers Selected for by Artemether-Lumefantrine Treatment in the Pre-ACT and Post-ACT Parasites in Western Kenya. International Journal for Parasitology: Drugs and Drug Resistance, 5, 92-99. https://doi.org/10.1016/j.ijpddr.2015.05.005
[49]
Li, D. and Roberts, R. (2001) WD-Repeat Proteins: Structure Characteristics, Biological Function, and Their Involvement in Human Diseases. Cellular and Molecular Life Sciences, 58, 2085-2097. https://doi.org/10.1007/PL00000838
[50]
Suganuma, T., Pattenden, S.G. and Workman, J.L. (2008) Diverse Functions of WD40 Repeat Proteins in Histone Recognition. Genes and Development, 22, 1265-1268.
https://doi.org/10.1101/gad.1676208
[51]
Schapira, M., Tyers, M., Torrent, M. and Arrowsmith, C.H. (2017) WD40 Repeat Domain Proteins: A Novel Target Class? Nature Reviews Drug Discovery, 16, 773-786. https://doi.org/10.1038/nrd.2017.179
[52]
Kristofich, J.C., Morgenthaler, A.B., Kinney, W.R., Ebmeier, C.C., Snyder, D.J., Old, W.M., Cooper, V.S. and Copley, S.D. (2018) Synonymous Mutations Make Dramatic Contributions to Fitness When Growth Is Limited by a Weak-Link Enzyme. PLoS Genetics, 14, e1007615. https://doi.org/10.1371/journal.pgen.1007615
[53]
Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E. and Babu, M.M. (2014) Classification of Intrinsically Disordered Regions and Proteins. Chemical Reviews, 114, 6589-6631. https://doi.org/10.1021/cr400525m
[54]
Ntountoumi, C., Vlastaridis, P., Mossialos, D., Stathopoulos, C., Iliopoulos, I., Promponas, V., Oliver, S.G. and Amoutzias, G.D. (2019) Low Complexity Regions in the Proteins of Prokaryotes Perform Important Functional Roles and Are Highly Conserved. Nucleic Acids Research, 47, 9998-10009.
https://doi.org/10.1093/nar/gkz730
[55]
Schwartz, C.J., Djaman, O., Imlay, J.A. and Kiley, P.J. (2000) The Cysteine Desulfurase, IscS, Has a Major Role in Vivo Fe-S Cluster Formation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97, 9009-9014. https://doi.org/10.1073/pnas.160261497
[56]
Gisselberg, J.E., Dellibovi-Ragheb, T.A., Matthews, K.A., Bosch, G. and Prigge, S.T. (2013) The Suf Iron-Sulfur Cluster Synthesis Pathway Is Required for Apicoplast Maintenance in Malaria Parasites. PLoS Pathogens, 9, e1003655.
https://doi.org/10.1371/journal.ppat.1003655
[57]
Lill, R., Broderick, J.B. and Dean, D.R. (2015) Special Issue on Iron-Sulfur Proteins: Structure, Function, Biogenesis and Diseases. Biochimica et Biophysica Acta Molecular Cell Research, 1853, 1251-1252. https://doi.org/10.1016/j.bbamcr.2015.03.001
[58]
Van Dooren, G.G., Stimmler, L.M. and McFadden, G.I. (2006) Metabolic Maps and Functions of the Plasmodium Mitochondrion. FEMS Microbiology Reviews, 30, 596-630. https://doi.org/10.1111/j.1574-6976.2006.00027.x
Sussman, F., Villaverde, M.C., Luis, J., Meijide, D. and Danielson, H. (2012) On the Active Site Protonation State in Aspartic Proteases: Implications for Drug Design. Current Pharmaceutical Design, 19, 4257-4275.
https://doi.org/10.2174/1381612811319230009
[61]
Guo, C., McDowell, I.C., Nodzenski, M., Scholtens, D.M., Allen, A.S., Lowe, W.L. and Reddy, T.E. (2017) Transversions Have Larger Regulatory Effects than Transitions. BMC Genomics, 18, Article No. 394.
https://doi.org/10.1186/s12864-017-3785-4
[62]
Khanna, V. (2018) Rational Structure-Based Drug Design. In: Encyclopedia of Bioinformatics and Computational Biology, Elsevier Ltd., Amsterdam, 585-600.
https://doi.org/10.1016/B978-0-12-809633-8.20275-6
[63]
Cheuka, P.M., Dziwornu, G., Okombo, J. and Chibale, K. (2020) Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present). Journal of Medicinal Chemistry, 63, 4445-4467.
https://doi.org/10.1021/acs.jmedchem.9b01622
[64]
Nasamu, A.S., Polino, A.J., Istvan, E.S. and Goldberg, D.E. (2020) Malaria Parasite Plasmepsins: More than Just Plain Old Degradative Pepsins. Journal of Biological Chemistry, 295, 8425-8441. https://doi.org/10.1074/jbc.REV120.009309
[65]
Liu, P. (2017) Plasmepsin: Function, Characterization and Targeted Antimalarial Drug Development. In: Natural Remedies in the Fight against Parasites, IntechOpen, London, 190-194. https://doi.org/10.5772/66716