全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Catechin and Epicatechin. What’s the More Reactive?

DOI: 10.4236/cc.2022.102003, PP. 53-70

Keywords: Catechin, Epicatechin, NBO, Acidity, DFT, Normal Modes

Full-Text   Cite this paper   Add to My Lib

Abstract:

Catechin and epicatechin are two isomeric flavonoids. Despite the vital properties highlighted by numerous scientific studies, very little data is available on the intrinsic reactivity of these compounds. To provide more details on the stability and reactivity of catechin and epicatechin, this study is performed by means of theoretical calculation methods. For this purpose, geometry optimizations and frequency calculations at the B3LYP/6-31 + G (d, p) level of theory has been carried out and Natural Bond Orbital (NBO) analysis and VEDA (Vibrational Energy Distribution Analysis). The geometric and energy parameters and NBO analysis show that catechin appears more stable than epicatechin. The hydroxyl group position on the ring C of the catechol structure represents a factor that influences this relative stability. The global and local reactivity parameters reveal that epicatechin becomes more reactive than catechin. They indicate that their hydroxyl groups correspond to their most receptive sites. Fukui indices, VEDA and acidity study establish that O28–H29 remains the most reactive.

References

[1]  Wang, T.-Y., Li, Q. and Bi, K.-S. (2018) Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian Journal of Pharmaceutical Sciences, 13, 12-23.
https://doi.org/10.1016/j.ajps.2017.08.004
[2]  Terahara, N. (2015) Flavonoids in Food: A Review. Natural Product Communications, 10, 521-528.
https://doi.org/10.1177/1934578X1501000334
[3]  Crozier, A., Jagannath, I.B. and Clifford, M.N. (2009) Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Natural Product Reports, 26, 1001-1043.
https://doi.org/10.1039/b802662a
[4]  Assadpour, E., Jafari, S.M. and Esfanjani, A.F. (2017) Protection of Phenolic Compounds within Nanocarriers. CAB Review, 12, 1-8.
https://doi.org/10.1079/PAVSNNR201712057
[5]  Cantos, E., Espín, J.C. and Tomás-Barberán, F.A. (2002) Varietal Differences among the Polyphenol Profiles of Seven Table Grape Cultivars Studied by LC-DAD-MS-MS. Journal of Agricultural and Food Chemistry, 50, 5691-5696.
https://doi.org/10.1021/jf0204102
[6]  Hollman, P.C., Cassidy, A., Comte, B., Heinonen, M., Richelle, M., Richling, E., et al. (2011) The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans Isn’t Established. The Journal of Nutrition, 141, 989S-1009S.
https://doi.org/10.3945/jn.110.131490
[7]  Manach, C., Mazur, A. and Scalbert, A. (2005) Polyphenols and Prevention of Cardiovascular Diseases. Current Opinion in Lipidology, 16, 77-84.
https://doi.org/10.1097/00041433-200502000-00013
[8]  Sugihara, N., Ohnishi, M., Imamura, M. and Furuno, K. (2001) Differences in Antioxidative Efficiency of Catechins in Various Metal-Induced Lipid Peroxidations in Cultured Hepatocytes. Journal of Health Science, 47, 99-106.
https://doi.org/10.1248/jhs.47.99
[9]  Villaño, D., Fernández-Pachón, M.S., Moyá, M.L., Troncoso, A.M. and García-Parrilla, M.C. (2007) Radical Scavenging Ability of Polyphenolic Compounds towards DPPH Free Radical. Talanta, 71, 230-235.
https://doi.org/10.1016/j.talanta.2006.03.050
[10]  Preedy, V.R. (2012) Tea in Health and Disease Prevention. Elsevier Science and Technology Books, San Diego.
[11]  Kim, H.K., Jung, J., Kang, E.Y., Gang, G., Kim, W. and Go, G.W. (2020) Aronia melanocarpa Reduced Adiposity via Enhanced Lipolysis in High-Fat Diet-Induced Obese Mice. Korean Journal of Food Science and Technology, 52, 255-262.
https://doi.org/10.9721/KJFST.2020.52.3.255
[12]  Farkhondeh, T., Yazdi, H.S. and Samarghandian, S. (2019) The Protective Effects of Green Tea Catechins in the Management of Neurodegenerative Diseases: A Review. Current Drug Discovery Technology, 16, 57-65.
https://doi.org/10.2174/1570163815666180219115453
[13]  Grzesik, M., Naparło, K., Bartosz, G. and Sadowska-Bartosz, I. (2018) Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chemistry, 241, 480-492.
https://doi.org/10.1016/j.foodchem.2017.08.117
[14]  Pervin, M., Unno, K., Ohishi, T., Tanabe, H., Miyoshi, N. and Nakamura, Y. (2018) Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules, 23, Article No. 1297.
https://doi.org/10.3390/molecules23061297
[15]  Naponelli, V., Ramazzina, I., Lenzi, C., Bettuzzi, S. and Rizzi, F. (2017) Green Tea Catechins for Prostate Cancer Prevention: Present Achievements and Future Challenges. Antioxidants, 6, Article No. 26.
https://doi.org/10.3390/antiox6020026
[16]  Xiang, L.P., Wang, A., Ye, J.-H., Zheng, X.-Q., Polito, C.A., Lu, J.-L., et al. (2016) Suppressive Effects of Tea Catechins on Breast Cancer. Nutrients, 8, Article No. 458.
https://doi.org/10.3390/nu8080458
[17]  Catel-Ferreira, M., Tnani, H., Hellio, C., Cosette, P. and Lebrun, L. (2015) Antiviral Effects of Polyphenols: Development of Bio-Based Cleaning Wipes and Filters. Journal of Virological Methods, 212, 1-7.
https://doi.org/10.1016/j.jviromet.2014.10.008
[18]  Xu, J., Xu, Z. and Zheng, W. (2017) A Review of the Antiviral Role of Green Tea Catechins. Molecules, 22, Article No. 1337.
https://doi.org/10.3390/molecules22081337
[19]  Rietveld, A. and Wiseman, S. (2003) Antioxidant Effects of Tea: Evidence from Human Clinical Trials. The Journal of Nutrition, 133, 3285S-3292S.
https://doi.org/10.1093/jn/133.10.3285S
[20]  D’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B. and Masella, R. (2010) Bioavailability of the Polyphenols: Status and Controversies. International Journal of Molecular Sciences, 11, 1321-1342.
https://doi.org/10.3390/ijms11041321
[21]  Pandareesh, M.D., Mythri, R.B. and Srinivas Bharath, M.M. (2015) Bioavailability of dietary Polyphenols: Factors Contributing to Their Clinical Application in CNS Diseases. Neurochemistry International, 89, 198-208.
https://doi.org/10.1016/j.neuint.2015.07.003
[22]  Le, Z., Liu, Z., Sun, L., Liu, L. and Chen, Y. (2020) Augmenting Therapeutic Potential of Polyphenols by Hydrogen-Bonding Complexation for the Treatment of Acute Lung Inflammation. ACS Applied Bio Materials, 3, 5202-5212.
https://doi.org/10.1021/acsabm.0c00616
[23]  Gorbatchev, M., Gorinchoy, N. and Arsene, I. (2021) Key Role of Some Specific Occupied Molecular Orbitals of Short Chain n-Alkanes in Their Surface Tension and Reaction Rate Constants with Hydroxyl Radicals: DFT Study. International Journal of Organic Chemistry, 11, 1-13.
https://doi.org/10.4236/ijoc.2021.111001
[24]  Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Cole-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[25]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, G., et al. (2009) Gaussian 09, Revision A.1. Gaussian, Inc. Wallingford.
[26]  Glendening, E.D., Reed, A.E., Carpenter, J.E. and Weinhold, F. (1998) NBO Version 3.1.
[27]  Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons, Chichester, New York, Brisbane etc.
[28]  Streitwieser, A. (2013) Molecular Orbital Theory for Organic Chemists. Pioneers of Quantum Chemistry, American Chemical Society, 275-300.
https://doi.org/10.1021/bk-2013-1122.ch009
[29]  Koopmans, T. (1934) über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2
[30]  Ignaczak, A. and Gomes, J. (1996) Interaction of Halide Ions with Copper: The DFT Approach. Chemical Physics Letters, 257, 609-615.
https://doi.org/10.1016/0009-2614(96)00603-3
[31]  Parr, R.G., Szentpály, L.V. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
https://doi.org/10.1021/ja983494x
[32]  Fukui, K., Yonezawa, T. and Shingu, H. (1952) A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. The Journal of Chemical Physics, 20, 722-725.
https://doi.org/10.1063/1.1700523
[33]  Yang, W. and Mortier, W.J. (1986) The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. Journal of the American Chemical Society, 108, 5708-5711.
https://doi.org/10.1021/ja00279a008
[34]  Amić, D., Stepanić, V., Lučić, B., Marković, Z. and Dimitrić Marković, J.M. (2013) PM6 Study of Free Radical Scavenging Mechanisms of Flavonoids: Why Does O-H Bond Dissociation Enthalpy Effectively Represent Free Radical Scavenging Activity? Journal of Molecular Modeling, 19, 2593-2603.
https://doi.org/10.1007/s00894-013-1800-5
[35]  Pliego Jr., J.R. (2003) Thermodynamic Cycles and the Calculation of pKa. Chemical Physics Letters, 367, 145-149.
https://doi.org/10.1016/S0009-2614(02)01686-X
[36]  Pliego Jr., J. and Riveros, J.M. (2002) Gibbs Energy of Solvation of Organic Ions in Aqueous and Dimethyl Sulfoxide Solutions. Physical Chemistry Chemical Physics, 4, 1622-1627.
https://doi.org/10.1039/b109595a
[37]  Snehalatha, M., Ravikumar, C., Hubert Joe, I., Sekar, N. and Jayakumar, V.S. (2009) Spectroscopic Analysis and DFT Calculations of a Food Additive Carmoisine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 654-662.
https://doi.org/10.1016/j.saa.2008.11.017
[38]  Venkataramanan, N.S. and Suvitha, A. (2017) Structure, Electronic, Inclusion Complex Formation Behavior and Spectral Properties of Pillarplex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 88, 53-67.
https://doi.org/10.1007/s10847-017-0711-y
[39]  Reed, A.E., Curtiss, L.A. and Weinhold, F. (1988) Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews, 88, 899-926.
https://doi.org/10.1021/cr00088a005
[40]  Evans, J.C. (1960) The Vibrational Spectra of Phenol and Phenol-OD. Spectrochimica Acta, 16, 1382-1392.
https://doi.org/10.1016/S0371-1951(60)80011-2
[41]  Gangadharan, R.P. and Sampath Krishnan, S. (2014) Natural Bond Orbital (NBO) Population Analysis of 1-Azanapthalene-8-ol. Acta Physica Polonica A, 125, 18-22.
https://doi.org/10.12693/APhysPolA.125.18
[42]  Bayoumy, A.M., Ibrahim, M. and Omar, A. (2020) Mapping Molecular Electrostatic Potential (MESP) for Fulleropyrrolidine and Its Derivatives. Optical and Quantum Electronics, 52, Article No. 346.
https://doi.org/10.1007/s11082-020-02467-6
[43]  Gross, K.C. and Seybold, P.G. (2001) Substituent Effects on the Physical Properties and pKa of Phenol. International Journal of Quantum Chemistry, 85, 569-579.
https://doi.org/10.1002/qua.1525

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133