全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

类Samara飞行器的曲线跟踪控制
Curve-Tracking Control of Samara-Like Aircraft

DOI: 10.12677/DSC.2022.112006, PP. 44-56

Keywords: Samara,枫树种子,建模,飞行控制,曲线跟踪
Samara
, Maple Seeds, Modeling, Flight Controls, Curve-Tracking

Full-Text   Cite this paper   Add to My Lib

Abstract:

Samara飞行器是洛克希德·马丁公司在枫树种子的启发下研发的一款单桨旋翼机,它具有体积小、重量轻、气动效率高和隐蔽性强的特点。但是Samara飞行器的控制依赖于独立的视觉跟踪系统,该系统无法机载且价格昂贵,所以对Samara的研究一直处于实验室阶段。本课题组在此背景下,自行设计并制造了一款类Samara飞行器。它摒弃了Samara的视觉传感系统,使用普通民用的传感器和飞控板来进行控制。本文针对类Samara飞行器的曲线跟踪问题,提出了一种基于控制的建模方案,给出了曲线跟踪控制律。仿真结果表明,所设计的跟踪控制律能够使类Samara飞行器以较高的精度跟踪预设轨迹曲线。
The Samara aircraft is a single-propeller rotorcraft developed by Lockheed Martin inspired by maple seeds. It has the characteristics of small size, light weight, high aerodynamic efficiency and strong concealment. But the control of the Samara vehicle relies on an independent visual tracking system, which cannot be airborne and is expensive, so research on Samara has been in the laboratory stage. Under this background, our research group designed and manufactured a Samara-like aircraft. It abandoned Samara’s visual sensing system and used ordinary civilian sensors and flight control boards for control. In this paper, a control-based modeling scheme is proposed for the curve tracking problem of Samara-like aircraft, and the curve tracking control law is given. The simulation results show that the designed tracking control law can make the Samara-like aircraft track the preset trajectory curve with high precision.

References

[1]  Jameson, S., Satterfield, B., Bolden, C., et al. (2007) SAMARAI Nano Air Vehicle: A Revolution in Flight. Association for Unmanned Vehicle Systems International Unmanned Systems North America, 6-9.
[2]  Yatsko, A., Hockley, C. and Gamble, G.A. (2012) Issues Facing the Development of a Single-Winged Rotorcraft’s Control System. Proceedings of IEEE Southeastcon, Orlando, 15-18 March 2012, 1-4.
[3]  Jameson, S., Fregene, K., Ming, C., et al. (2012) Lockheed Martin’s Samarai Nano Air Vehicle: Challenges, Research, and Realization. 50th AIAA Aerospace Sciences Meeting, Nashville, 9-12 January 2012, 1-21.
[4]  Ulrich, E.R. and Pines, D.J. (2008) Planform Geometric Variation, and Its Effect on the Autorotation Efficiency of a Mechanical Samara. Annual Forum Proceeding—American Helicopter Society, 64, 1138-1149.
[5]  Ulrich, E.R. and Pines, D.J. (2012) Effects of Planform Geometry on Mechanical Samara Autorotation Efficiency and Rotational Dynamics. Journal of the American Helicopter Society, 57, 1-10.
[6]  Ulrich, E.R., Humbert, J.S. and Pines, D.J. (2012) Pitch and Heave Control of Robotic Samara Micro Air Vehicles. Journal of Aircraft, 47, 1290-1299.
[7]  朱宝鎏, 刘立天. “飞行大刀”的奥妙——不对称模型直升机飞行原理解析[J]. 航空模型, 2009(3): 23-25.
[8]  张帅浩, 郑祥明, 王鹏, 等. 仿枫树种子微型飞行器的总体与飞行控制设计[J]. 南京航空航天大学学报, 2015, 47(6): 856-861.
[9]  韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19-23.
[10]  邵星灵, 王宏伦. 线性扩张状态观测器及其高阶形式的性能分析[J]. 控制与决策, 2015, 30(5): 815-822.
[11]  韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
[12]  Gao, Z. (2003) Scaling and Bandwidth-Parameterization Based Controller Tuning. Proceedings of the American Control Conference, Denver, 4-6 June 2003, 4989-4996.
[13]  袁东, 马晓军, 曾庆含, 等. 二阶系统线性自抗扰控制器频带特性与参数配置研究[J]. 控制理论与应用, 2013, 30(12): 1630-1640.
[14]  Leishman, J.G. (2006) Principles of Helicopter Aerodynamics. Cambridge University Press, London, 115-141.
[15]  王永虎. 旋翼挥舞运动特性和挥舞规律[J]. 中国民航飞行学院学报, 2017, 28(6): 10.
[16]  杨一栋, 等. 直升机飞行控制[M]. 北京: 国防工业出版社, 2019: 272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133