pH-Dependence of Manganese (II) Oxidation Reaction by Novel Wild-Type and Mutants Recombinant Phlebia radiata Manganese Peroxidase 3 (rPr-MnP3) Enzymes
The goal of this study was to determine whether mutation of the Mn-binding site of wild-type recombinant Phlebia radiata manganese peroxidase 3 affected the pH-dependence kinetic parameters. pH range investigated was 2.5 – 12.0. The catalytic efficiency of the mutant enzymes at high and low pH in comparison to the wild-type was investigated using standard rPr-MnP3 protocol. Wild-type recombinant Phlebia radiata MnP3 enzyme showed optimal activity with Mn (II) as substrate at pH 5.0 and remained moderately active (approximately 40%) in the pH range of 6.0 - 9.0. The rPr-MnP3 mutants’ maximum activity ranged between 5.5 and 8.0. Wild-type and mutants rPr-MnP3 enzymes exhibited a similar pH profile with optimum pH of 3.0 for ABTS oxidation. Mutation has severely decreased the catalytic efficiency for Mn (II) oxidation at pH 5.0. The rPr-MnP3 enzymes showed enhanced affinity for Mn (II) at alkaline pH and a more alkaline range for catalysis than ever reported for any Manganese Peroxidase. This study reveals that at higher pH, rPr-MnP3 can function with alternative ligands in the Mn (II) site and does not have an absolutely obligate requirement for an all carboxylate ligand set. These results further strongly confirm that Mn2+ binding site is the only productive catalytic site for Mn (II) oxidation.
References
[1]
Shin, K.S., Kim, Y.H. and Lim, J.S. (2005) Purification and Characterization of Manganese Peroxidase of the White-Rot Fungus Irpex lacteus. Journal of Microbiology, 43, 503-509.
[2]
Xu, H., Guo, M., Gao, Y., Bai, X. and Zhou, X. (2017) Expression and Characteristics of Manganese Peroxidase from Ganoderma lucidum in Pichia pastoris and Its Application in the Degradation of Four Dyes and Phenol. BMC Biotechnology, 17, Article No. 19. https://doi.org/10.1186/s12896-017-0338-5
[3]
Paszczynski, A., Huynh, V.B. and Crawford, R. (1985) Enzymatic Activities of an Extracellular, Manganese-Dependent Peroxidase from Phanerochaete chrysosporium. FEMS Microbiology Letters, 29, 37-41.
https://doi.org/10.1111/j.1574-6968.1985.tb00831.x
[4]
Glenn, J.K. and Gold, M.H. (1985) Purification and Characterization of an Extracellular Mn(II)-Dependent Peroxidase from the Lignin-Degrading Basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 242, 329-334. https://doi.org/10.1016/0003-9861(85)90217-6
[5]
Lundell, T.K., Makela, M.R. and Hildén, K. (2010) Lignin-Modifying Enzymes in Filamentous Basidiomycetes-Ecological, Functional and Phylogenetic Review. Journal of Basic Microbiology, 50, 5-20. https://doi.org/10.1002/jobm.200900338
[6]
Tello, M., Corsini, G., Larrondo, L.F., Salas, L., Lobos, S. and Vicuna, R. (2000) Characterization of Three New Manganese Peroxidase Genes from the Ligninolytic Basidiomycete Ceriporiopsis subvermispora. Biochimica et Biophysica Acta, 1490, 137-144. https://doi.org/10.1016/S0167-4781(99)00227-4
[7]
Maeda, Y., Kajiwara, S. and Ohtaguchi, K. (2001) Manganese Peroxidase Gene of the Perennial Mushroom Elfvingia applanata: Cloning and Evaluation of Its Relationship with Lignin Degradation, Biotechnology Letters, 23, 103-109.
https://doi.org/10.1023/A:1010341232388
[8]
Johansson, T., Nyman, P.O. and Cullen, D. (2002) Differential Regulation of mnp2, a New Manganese Peroxidase-Encoding Gene from the Ligninolytic Fungus Trametes versicolor PRL 572. Applied Microbiology and Biotechnology, 68, 2077-2080.
https://doi.org/10.1128/AEM.68.4.2077-2080.2002
[9]
Lankinen, P., Hildén, K., Aro, N., Salkinoja-Salonen, M. and Hatakka, A. (2005) Manganese Peroxidase of Agaricus bisporus: Grain Bran-Promoted Production and Gene Characterization. Applied Microbiology and Biotechnology, 66, 401-407.
https://doi.org/10.1007/s00253-004-1731-2
[10]
Sakamoto, Y., Nakade, K., Nagai, M., Uchimiya, H. and Sato, T. (2009) Cloning of Lentinula edodes lemnp2, a Manganese Peroxidase That Is Secreted Abundantly in Sawdust Medium. Mycoscience, 50, 116-122.
https://doi.org/10.1007/S10267-008-0463-Z
[11]
Dong, Y.C., Dai, Y.N., Xu, T.Y., Cai, J. and Chen, Q.H. (2014) Biodegradation of Chestnut Shell and Lignin-Modifying Enzymes Production by the White-Rot Fungi Dichomitus squalens, Phlebia radiata. Bioprocess and Biosystems Engineering, 37, 755-764. https://doi.org/10.1007/s00449-013-1045-9
[12]
Steffen, K.T., Hofrichter, M. and Hatakka, A. (2003) Purification and Characterization of Manganese Peroxidases from the Litter-Decomposing Basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme and Microbial Technology, 30, 550-555. https://doi.org/10.1016/S0141-0229(01)00525-7
[13]
Qin, X., Zhang, J., Zhang, X. and Yang, Y. (2014) Induction, Purification and Characterization of a Novel Manganese Eroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye. PLoS ONE, 9, e113282.
https://doi.org/10.1371/journal.pone.0113282
[14]
Rodríguez, C.S., Domínguez, A. and Sanromán, A. (2002) Production of Manganese-Dependent Peroxidase in a New Solid-State Bioreactor by Phanerochaete chrysosporium Grown on Wood Shavings. Application to the Decolorization of Synthetic Dyes. Folia Microbiologicaogica, 47, 417-421.
https://doi.org/10.1007/BF02818701
[15]
Boer, C.G., Obici, L., de Souza, C.G. and Peralta, R.M. (2004) Decolourization of Synthetic Dyes by Solid State Cultures of Lentinula (Lentinus) Edodes Producing Manganese Peroxidase as the Main Ligninolytic Enzyme. Bioresource Technology, 94, 107-112. https://doi.org/10.1016/j.biortech.2003.12.015
[16]
Champagne, P.P. and Ramsay, J.A. (2005) Contribution of Manganese Peroxidase and Laccase to Dye Decolouration by Trametes versicolor. Applied Microbiology and Biotechnology, 69, 276-285. https://doi.org/10.1007/s00253-005-1964-8
[17]
Susla, M., Novotny, C., Erbanová, P. and Svobodová, K. (2008) Implication of Dichomitus squalens Manganese-Dependent Peroxidase in Dye Decolourization and Cooperation of the Enzyme with Laccase. Folia Microbiologica, 3, 479-485.
https://doi.org/10.1007/s12223-008-0075-1
[18]
Praveen, K., Usha, K.Y., Viswanath, B. and Reddy, B.R. (2012) Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum ostrea and Its Ability to Decolorize Dyes. Journal of Microbiology and Biotechnology, 22, 1540-1548.
https://doi.org/10.4014/jmb.1112.12011
[19]
Kuan, I.C., Johnson, K.A. and Tien, M. (1993) Kinetic Analysis of Manganese Peroxidase. The Reaction with Manganese Complexes. Journal of Biological Chemistry, 268, 20064-20070. https://doi.org/10.1016/S0021-9258(20)80694-2
[20]
Kishi, K., Wariishi, H., Marquez, L., Dunford, H.B. and Gold, M.H. (1994) Mechanism of Manganese Peroxidase Compound II Reduction. Effect of Organic Acid Chelators and pH. Biochemistry, 33, 8694-8701.
https://doi.org/10.1021/bi00195a010
[21]
Paszczyński, A., Huynh, V.-B. and Crawford, R. (1986) Comparison of Ligninase-I and Peroxidase-M2 from the White-Rot Fungus Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 244, 750-765.
https://doi.org/10.1016/0003-9861(86)90644-2
[22]
Wariishi, H., Dunford, H.B., MacDonald, I.D. and Gold, M.H. (1989) Manganese Peroxidase from the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Transient State Kinetics and Reaction Mechanism. Journal of Biological Chemistry, 264, 3335-3340. https://doi.org/10.1016/S0021-9258(18)94070-6
[23]
Gregory, D.S., Martin, A.C.R., Cheetham, J.C. and Rees, A.R. (1993) The Prediction and Characterization of Metal Binding Sites in Proteins. Protein Engineering, 6, 29-35. https://doi.org/10.1093/protein/6.1.29
[24]
Kennedy, M.L. and Gibney, B.R. (2001) Metalloprotein and Redox Protein Design. Current Opinion in Structural Biology, 11, 485-490.
https://doi.org/10.1016/S0959-440X(00)00237-2
[25]
Wariishi, H., Valli, K. and Gold, M.H. (1992) Manganese (II) Oxidation by Manganese Peroxidase from the Basidiomycete Phanerochaete chrysosporium. Kinetic Mechanism and Role of Chelators. Journal of Biological Chemistry, 267, 23688-23695.
https://doi.org/10.1016/S0021-9258(18)35893-9
[26]
Maneiro, M., Ruettinger, W.F., Bourles, E., McLendon, G.L. and Dismukes, G.C. (2003) Kinetics of Proton-Coupled Electron-Transfer Reactions to the Manganese-Oxo “Cubane” Complexes Containing the MnO4 and MnO4 Core Types. Proceedings of the National Academy of Sciences, 100, 3707-3712.
https://doi.org/10.1073/pnas.0637229100
[27]
Garcia, J.S., Magalhnes, C.S.d. and Arruda, M.A.Z. (2006) Trends in Metal-Binding and Metalloprotein Analysis. Talanta, 69, 1-15.
https://doi.org/10.1016/j.talanta.2005.08.041
[28]
Glenn, J.K., Akileswaran, L. and Gold, M.H. (1986) Mn (II) Oxidation Is the Principal Function of Extracellular Mn-Peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 251, 688-696.
https://doi.org/10.1016/0003-9861(86)90378-4
[29]
Pankaj, C., Gargi, S., Garima, R., Luiz, F., Romanholo, F. and Ram, N.B. (2019) Microbial Manganese Peroxidase: A Ligninolytic Enzyme and Its Ample Opportunities in Research. SN Applied Sciences, 1, 45. https://doi.org/10.1007/s42452-018-0046-3
[30]
Wariishi, H., Akileswaran, L. and Gold, M.H. (1988) Manganese Peroxidase from the Basidiomycete Phanerochaete chrysosporium: Spectral Characterization of the Oxidized States and the Catalytic Cycle. Biochemistry, 27, 5365-5370.
https://doi.org/10.1021/bi00414a061
[31]
Wariishi, H., Valli, K. and Gold, M.H. (1991) In Vitro Depolymerization of Lignin by Manganese Peroxidase of Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 176, 269-275.
https://doi.org/10.1016/0006-291X(91)90919-X
[32]
Bonnarme, P. and Jeffries, T.W. (1990) Mn(II) Regulation of Lignin Peroxidase and Manganese-Dependent Peroxidase from Ligni-Degrading White-Rot Fungi. Applied and Environmental Microbiology, 56, 210-217.
https://doi.org/10.1128/aem.56.1.210-217.1990
[33]
Brown, J., Glenn, J.K. and Gold, M.H. (1990) Manganese Regulates Expression of Manganese Peroxidase by Phanerochaete chrysosporium. Journal of Bacteriology, 172, 3125-3130. https://doi.org/10.1128/jb.172.6.3125-3130.1990
[34]
Perez, J. and Jeffries, T.W. (1990) Mineralization of 14C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, Not Mn-Peroxidase or Laccase. Applied and Environmental Microbiology, 56, 1806-1812.
https://doi.org/10.1128/aem.56.6.1806-1812.1990
[35]
Childs, R.E. and Bardsley, W.G. (1975) The Steady-State Kinetics of Peroxidase with 2,2’-Azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as Chromogen. Biochemical Journal, 145, 93-103. https://doi.org/10.1042/bj1450093
[36]
Paice, M.G., et al. (1993) Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching Demethylates and Delignifies Kraft Pulp. Applied and Environmental Microbiology, 59, 260-265.
https://doi.org/10.1128/aem.59.1.260-265.1993
[37]
Martinez, M.J., Ruiz-Duenas, F.J., Guillén, F. and Martínez, A.T. (1996) Purification and Catalytic Properties of Two Manganese Peroxidase Isoenzymes from Pleurotus eryngii. European Journal of Biochemistry, 237, 424-432.
https://doi.org/10.1111/j.1432-1033.1996.0424k.x
[38]
Hofrichter, M., Vares, K., Scheibner, K., Galkin, S., Sipila, J. and Hatakka, A. (1999) Mineralization and Solubilization of Synthetic Lignin by Manganese Peroxidases from Nematoloma frowardii and Phlebia radiata. Journal of Biotechnology, 67, 217-228. https://doi.org/10.1016/S0168-1656(98)00180-1
[39]
Aliaga, C. and Lissi, E.A. (1998) Reaction of 2,2-Azinobis(3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Derived Radicals with Hydroperoxides. Kinetics and Mechanism. International Journal of Chemical Kinetics, 30, 565-570.
https://doi.org/10.1002/(SICI)1097-4601(1998)30:8<565::AID-KIN5>3.0.CO;2-Q
[40]
Campos, A.M. and Lissi, E.A. (1997) Kinetics of the Reaction between 2,2-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Derived Radical Cations and Phenols. International Journal of Chemical Kinetics, 29, 219-224.
https://doi.org/10.1002/(SICI)1097-4601(1997)29:3<219::AID-KIN9>3.0.CO;2-X
[41]
Ufot, U.F. and Akpanabiatu, M.I. (2012) An Engineered Phlebia radiata Manganese Peroxidase: Expression, Refolding, Purification and Preliminary Characterization. American Journal of Molecular Biology, 2, 359-370.
https://doi.org/10.4236/ajmb.2012.24037
[42]
Abelskov, A.K., Smith, A.T., Rasmussen, C.B., Dunford, H.B. and Welinder, K.G. (1995) pH-Dependence and Structural Interpretation of the Reactions of Coprinus cinereus Peroxidase with Hydrogen Peroxide, Ferulic Acid, and 2,2’-Azinobis(3-ethylbenzthiazoline-6-sulfonic acid). Biochemistry, 34, 4022-4029.
[43]
Dogan, S., Dogan, M. and Arslan, O. (2003) Characterization of Polyphenol Oxidase from Thymus (Thymus longicaulis var subisophyllus). Advances in Food Sciences, 25, 6-64.
[44]
Whitaker, J.R. (1994) Effect of pH on Enzyme Catalysed Reactions. In: Principles of Enzymology for the Food Science, 2nd Edition, Marcel Dekker, New York, 271-300.
https://doi.org/10.1201/9780203742136-10
[45]
Bonnen, A.M., Anton, L.H. and Orth, A.B. (1994) Lignin Degrading Enzymes of the Commercial Button Mushroom, Agaricus bisporus. Applied and Environmental Microbiology, 60, 960-965. https://doi.org/10.1128/aem.60.3.960-965.1994
[46]
Hinder, A.N.P., Ruiz, J.H., Lopez, J.N.R. Canovas, F.G., Brisset, N.C., Smith, A.T., Arnao, M.B. and Acosta, M. (2002) Reactions of the Class II Peroxidase, Lignin Peroxidase and Arthro ramosus Peroxidase with Hydrogen Peroxidase. Journal of Biological Chemistry, 277, 26879-26885. https://doi.org/10.1074/jbc.M200002200
[47]
Johnson, C.R., Cullen, D. and Lamar, R.T. (1994) Manganese Peroxidases of the White Rot Fungus Phanerochaete sordida. Applied and Environmental Microbiology, 60, 599-605. https://doi.org/10.1128/aem.60.2.599-605.1994
[48]
Perie, F.H., Sheng, D. and Gold, M.H. (1996) Purification and Characterization of Two Manganese Peroxidase Isozymes from the White-Rot Basidomycete Dichomitus squalens. Biochimica et Biophysica Acta, 1297, 139-148.
https://doi.org/10.1016/S0167-4838(96)00096-9
[49]
Forrester, I.T., Grabski, A.C., Mishra, C., Kelly, B.D., Striekl, W.N., Leatham, G.E. and Burgess, R.R. (1990) Characteristics and N-Terminal Amino Acid Sequence of a Manganese Peroxidase Purified from Lentinula edodes Culture Grown on a Commercial Wood Substrate. Applied Microbiology and Biotechnology, 33, 359-365.
https://doi.org/10.1007/BF00164536
[50]
Hatakka, A.I. (1994) Lignin-Modifying Enzymes from Selected White-Rot Fungi-Production and Role in Lignin Degradation. FEMS Microbiology Reviews, 13, 125-135. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
[51]
Perez, J. and Jeffries, T.W. (1992) Roles of Manganese and Organic Acid Chelators in Regulating Lignin Degradation and Biosynthesis of Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 2402-2409.
https://doi.org/10.1128/aem.58.8.2402-2409.1992
[52]
Sarkar, S., Martinez, A.T. and Martinez, M.J. (1997) Biochemical and Molecular Characterization of a Manganese Peroxidases Isoenzyme from Pleurotus ostreatus. Biochimica et Biophysica Acta, 1339, 23-30.
https://doi.org/10.1016/S0167-4838(96)00201-4
[53]
Kanayama, N., Suzuki, T. and Kawai, K. (2002) Purification and Characterization of an Alkaline Manganese Peroxidase from Aspergillus terreus LD-I. Journal of Bioscience and Bioengineering, 93, 405-410.
https://doi.org/10.1016/S1389-1723(02)80075-5
[54]
Purcell, W.L. and Erman, J.E. (1976) Cytochrome c Peroxidase Catalyzed Oxidations of Substitution Inert Iron II Complexes. Journal of the American Chemical Society, 98, 7033-7037. https://doi.org/10.1021/ja00438a049
[55]
Hayashi, Y. and Yamazaki, I. (1979) The Oxidation-Reduction Potentials of Compound I, Compound II and Compound II Ferric Couples of Horseradish Peroxidases A2 and C. Journal of Biological Chemistry, 254, 101-106.
https://doi.org/10.1016/S0021-9258(19)86816-3
[56]
Ivan, A., Antonio, L., De Lacey, F., Cacada, J., Francisco, J., Ruiz-Due, C. and Martnez, A.T. (2019) Increase of Redox Potential during the Evolution of Enzymes Degrading Recalcitrant Lignin. Journal of the American Chemical Society, 25, 2708-2712. https://doi.org/10.1002/chem.201805679
[57]
Kishi, K., Kustersvan Someren, M., Mayfield, M.B., Sun, J., Loehr, T.M. and Gold, M.H. (1996) Characterization of Manganese(II) Binding Site Mutants of Manganese Peroxidase. Biochemistry, 35, 8986-8994. https://doi.org/10.1021/bi960679c
[58]
Ufot, U.F. and Akpanabiatu, M.I. (2014) Influence of CaCl2 and EDTA on Reversible Thermal Inactivation of Recombinant Wild-Type and Mutant (E40H/E44H) Phlebia radiata Manganese Peroxidase 3(rPr-MnP3). African Journal of Biochemistry Research, 8, 118-126. https://doi.org/10.5897/AJBR2014.0788