全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Review: Prediction of Unexpected Fluid-Induced Vibration in Pipeline Network

DOI: 10.4236/wjm.2022.122002, PP. 17-40

Keywords: Fluid-Induced Vibration, Flow Oscillation, Tube Flow, Laminar Steady Flow, Fluid Power Plant

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review considers unexpected destructive disasters involving fluid power plants, such as nuclear electric power plants and fluid power plants. It specifically addresses the possibility of fluid vibration induced in a pipeline network of such a plant. The authors investigate the flow oscillation induced within a T-junction for laminar steady flow at a Reynolds number less than 103 and clarify that there is a periodic fluid oscillation with a constant Strouhal number independent of several flow conditions. Generally, a nuclear electric power plant is constructed using straight pipes, elbows, and T-junctions. Indeed, a T-Junction is a basic fluid element of a pipeline network. The flow in a fluid power plant is turbulent. There are peculiar flow phenomena that occur at high Reynolds numbers, which are also seen in other flow situations; e.g., Kaman vortices are observed around a circular cylinder in low Reynolds numbers, around structures like bridges and downstream of islands in oceans. Although the flow situation of a T-junction and elbow in a fluid power plant, such as the fluid suddenly changing its flow direction is turbulent flow, the authors mention the possibility of the fluid-induced vibration of a pipeline network.

References

[1]  Benard, H. (1908) Formation périodique de centres de giration à l'arrière d'un obstacle en mouvement. Comptes Rendus de l’Académie des Sciences Paris, 147, 839-842.
[2]  Von Karman, Th. (1911) Uber den Mechanismus des Widerstandes, den ein bewegter Korper in einer Flussigkeit eruzeugt. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1911, 509-517.
[3]  Von Karman, Th. and Rubach, H. (1921) Uber den Mechanismus, des Flussigkeits-und Luftwider-standes. Physikalische Zeitschrift, 13, 49-59.
[4]  Takoma Bridge Incident.
https://www.google.com/search?q=tacoma+narrows+bridge+collapse
[5]  Monju Incident 1995. (In Japanese)
http://www.aec.go.jp/jicst/NC/senmon/old/koso/siryo/koso01/siryo07.htm
[6]  Mihama Nuclear Power Plant Incident 1991. (In Japanese)
https://atomica.jaea.go.jp/data/detail/dat_detail_02-07-02-04.html
[7]  Brown, G.L. and Roshko, A. (1974) On Density Effects and Large Structure in Turbulence Mixing Layers. Journal of Fluid Mechanics, 64, 775-816.
https://doi.org/10.1017/S002211207400190X
[8]  Tani, I. (1964) Low-Speed Flows Involving Bubble Separation. Progress in Aeronautical Sciences, 5, 79-103.
https://doi.org/10.1016/0376-0421(64)90004-1
[9]  Taneda, S. (1963) The Stability of Two-Dimensional Laminar Wakes at Low Reynolds Number. Journal of the Physical Society of Japan, 18, 288-296.
https://doi.org/10.1143/JPSJ.18.288
[10]  Sarohia, V. (1977) Experimental Investigation of Oscillations Flows over Shallow Cavities. AIAA Journal, 15, 984-991.
https://doi.org/10.2514/3.60739
[11]  Rockwell, D. and Naudascher, E. (1978) Review-Self-Sustaining Oscillations of Flow past Cavities. ASME Journal of Fluids Engineering, 100, 152-165.
https://doi.org/10.1115/1.3448624
[12]  Sherwin, S.J. and Blackburn, H.M. (2005) Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows. Journal of Fluid Mechanics, 533, 297-327.
https://doi.org/10.1017/S0022112005004271
[13]  Mori, T. and Nagamura, K. (2010) LDV and PIV Measurements of the Organized Oscillations of Turbulent Flow over a Rectangular Cavity. Journal of Fluid Science and Technology, 5, 370-383.
https://doi.org/10.1299/jfst.5.370
[14]  Baes, A.J., Dooly, D.J., Schroter, R.C., Cetto, R., Calmet, H., Gambaruto, A.M., Tolly, N. and Houzeaux, G. (2015) Dynamics of Airflow in a Short Inhalation. Journal of the Royal Society Interface, 12, Article ID: 20140880.
https://doi.org/10.1098/rsif.2014.0880
[15]  Dooly, D., Taylor, D.J., Franke, P. and Schroter, R.C. (2008) Experimental Investigation of Nasal Airflow. Journal of Engineering in Medicine, 222, 439-453.
https://doi.org/10.1243/09544119JEIM330
[16]  Balint, T.S. and Lucey, A.D. (2005) Instability of a Cantilevered Flexible Plate in Viscous Channel Flow. Journal of Fluids and Structures, 20, 893-912.
https://doi.org/10.1016/j.jfluidstructs.2005.05.005
[17]  Keshtkar, H. and Jafari, A.A. (2017) Vibration Analysis of a Turbulent Fluid Passing Inside an Elbow Shaped Pipe Section. Journal of Applied Mechanical Engineering, 6, 273.
https://doi.org/10.4172/2168-9873.1000273
[18]  Yagi, T., Sato, A., Shinke, M., Takahashi, S., Tobe, Y., Takao, H., Murayama, Y. and Umezu, M. (2013) Experimental Insights into Flow Impingement in Cerebral Aneurysm by Stereoscopic Particle Image Velocimetry: Transition from a Laminar Regime. Journal of the Royal Society Interface, 10, Article ID: 20121031.
https://doi.org/10.1098/rsif.2012.1031
[19]  Valen-Sendstad, K., Mardal, K.-A., Mortensen, M., Reif, B.A.P. and Langtangen, H.P. (2011) Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm. Journal of Biomechanics, 44, 2826-2832.
https://doi.org/10.1016/j.jbiomech.2011.08.015
[20]  Valen-Sendstad, K., Mardal, K.-A. and Steinman, D.A. (2013) High-Resolution CFD Detects High-Frequency Velocity Fluctuations in Bifurcation, But Not Sidewall Aneurysms. Journal of Biomechanics, 46, 402-407.
https://doi.org/10.1016/j.jbiomech.2012.10.042
[21]  Valen-Sendstad, K., Piccinelli, M. and Steinman, D.A. (2014) High-Resolution Computational Fluid Dynamics Detects Flow Instabilities in the Carotid Siphon: Implications for Aneurysm Initiation and Rupture? Journal of Biomechanics, 47, 3210-3216.
https://doi.org/10.1016/j.jbiomech.2014.04.018
[22]  Il’ichev, A.T. and Fu, Y.-B. (2012) Stability of Aneurysm Solutions in a Fluid-Filled Elastic Membrane Tube. Acta Mechanica Sinica, 28, 1209-1218.
https://doi.org/10.1007/s10409-012-0135-2
[23]  Baek, H., Jayaraman, M.V., Richardson, P.D. and Karniadakis, G.E. (2010) Flow Instability and Wall Shear Stress Variation in Intracranial Aneurysms. Journal of the Royal Society Interface, 7, 967-988.
https://doi.org/10.1098/rsif.2009.0476
[24]  Awasthi, M.K. (2013) Nonlinear Analysis of Rayleigh-Taylor Instability of Cylindrical Flow with Heat and Mass Transfer. Journal of Fluids Engineering-Transactions of the ASME, 135, Article ID: 061205.
https://doi.org/10.1115/1.4024001
[25]  Bernard, T., Truman, C.R., Vorobieff, P., Corbin, C., Wayne, P.J., Kuehner, G. anderson, M. and Kumar, S. (2015) Observation of the Development of Secondary Features in a Richtmyer-Meshkov Instability Driven Flow. Journal of Fluids Engineering-Transactions of the ASME, 137, Article ID: 011206.
https://doi.org/10.1115/1.4027829
[26]  Liu, L.J. and Lu, L.P. (2014) Instability of Viscoelastic Annular Liquid Jets in a Radial Electric Field. Journal of Fluids Engineering, 136, Article ID: 081202.
https://doi.org/10.1115/1.4026925
[27]  Bouzgarrou, G., Bury, Y., Jamme, S., Joly, L. and Haas, J.F. (2014) Laser Doppler Velocimetry Measurements in Turbulent Gaseous Mixing Induced by the Richtmyer-Meshkov Instability: Statistical Convergence Issues and Turbulence Quantification. Journal of Fluids Engineering, 136, Article ID: 091209.
https://doi.org/10.1115/1.4027311
[28]  File: Jeju Do von Karman Vortex Street Mar 2 2011 02 35(UTC).
http://commons.wikimedia.org
[29]  The Japan Society of Mechanical Engineers (1979) JSME Data Handbook: Hydraulic Losses in Pipes and Ducts. The Japan Society of Mechanical Engineers, Tokyo, 86-95. (In Japanese)
[30]  Karino, T., Kwong, H.H.M. and Goldsmith, H.L. (1979) Particle Flow Behavior in Models of Branching Vessels: I Vortices in 90° T-Junctions. Biorheology, 16, 231-248.
https://doi.org/10.3233/BIR-1979-16312
[31]  Liepsch, D., Poll, A., Strigberger, J., Sabbah, H.N. and Stein, P.D. (1989) Flow Visualization Studies in a Mold of the Normal Human Aorta and Renal Arteries. ASME Journal of Biomechanical Engineering, 111, 222-227.
https://doi.org/10.1115/1.3168369
[32]  Perktold, K. and Peter, R. (1990) Numerical 3D-Simulation of Pulsatile Wall Shear Stress in an Arterial T-Bifurcation Model. Journal of Biomedical Engineering, 12, 2-12.
https://doi.org/10.1016/0141-5425(90)90107-X
[33]  Yung, C.N., De Witt, K.J. and Keith Jr., T.G. (1990) Three-Dimensional Steady Flow through a Bifurcation. Journal of Biomechanical Engineering—Transactions of the ASME, 112, 189-197.
https://doi.org/10.1115/1.2891171
[34]  Yamaguchi, R., Mashima, T. and Takahashi, Y. (1997) Separated Secondary Flow and Wall Shear Stress in Side Branch of Right Angle Branch. ASME Paper No. 3303.
[35]  Yamaguchi, R., Shigeta, M., Kudo, S. and Hayase, T. (2000) Wall Shear Stress and Periodical Oscillation Induced in Side Branch at Right Angle Branch in Laminar Steady Flow. ASME Paper No. 11085.
[36]  Tanaka, G., Yamaguchi, R., Liu, H. and Hayase, T. (2016) Fluid Vibration Induced by High-Shear-Rate Flow in a T-Junction. ASME Journal of Fluids Engineering, 138, Article ID: 081103.
https://doi.org/10.1115/1.4032935
[37]  Yamaguchi, R., Tanaka, G., Liu, H. and Hayase, T. (2016) Fluid Vibration Induced in T-Junction with Double Side Branches. WJM, 6, 169-179.
https://doi.org/10.4236/wjm.2016.64014
[38]  Yamaguchi, R., Tanaka, G., Liu, H. and Hayase, T. (2017) Universality of Periodic Oscillation Induced in Side Branch of a T-Junction in Numerical Simulation. Journal of Flow Control, Measurement & Visualization, 5, 73-85.
http://www.scirp.org/journal/jfcmv
[39]  Yamaguchi, R., Mashima, T., Amagai, H., Fujii, H., Hayase, T. and Tanishita, K. (2005) Variation of Wall Shear Stress and Periodic Oscillations Induced in the Right-Angle Branch during Laminar Steady Flow. ASME Journal of Fluids Engineering, 127, 1013-1020.
https://doi.org/10.1115/1.1852480
[40]  Schlichting, H. (1976) Boundary Layer Theory. 7th Edition, McGraw-Hill Book, New York, 32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133