|
液相法制备BiVO4微纳米材料研究进展
|
Abstract:
BiVO4作为一种优良的半导体材料,在光催化领域内引起了人们广泛的关注。与其他半导体材料相比,单相晶相BiVO4有着更低的带隙能(约2.4 eV),因此在可见光区的响应特性,赋予了其优越的光催化性能。本论文综述了BiVO4微纳米材料的常见液相合成法,包括水热法、共沉淀法、溶胶–凝胶法、微乳液法等。针对单一BiVO4光生电子和空穴易复合、迁移速率较慢等缺点,本文归纳了几种改性方法:形貌调控,调节其形状及比表面积大小,实现BiVO4的光催化能力的提高;构建异质结,与半导体材料、贵金属等复合,改变其表面组成,从而提高BiVO4的光催化性能。最后分析了目前的制备方法中的不足之处并提出展望。
As an excellent semiconductor material, BiVO4 has attracted wide-spread attention in the field of photocatalysis. In comparison with other common semiconductor materials, the monoclinic has a lower band gap energy (about 2.4 eV) and thereby exhibiting visible light responsive and excellent photocatalytic properties. In this work, we will overview the common liquid-phase synthetic methods of BiVO4 micro/nanomaterials, including the hydro-thermal method, co-precipitation method, sol-gel method, and microemulsion method. In addition, in view of the shortcomings of easy recombination of photogenerated electrons and holes, and slow migration rate, several modification methods for prime BiVO4 are introduced. Mor-phology control: adjust its shape and specific surface area to achieve the enhancement of photo-catalytic/adsorption capacity of BiVO4. Construction of heterojunction: compound with semiconductor materials, and noble metals to change its surface composition to improve the pho-tocatalytic performance of BiVO4. Finally, the drawbacks of the current preparation methods are analyzed and prospects are proposed.
[1] | 梁芳, 史发年. 铋基双金属光催化剂合成及降解有机污染物研究进展[J]. 无机盐工业, 2022, 54(4): 61-68. |
[2] | Jiang, L.W., Qin, Q., Wang, Y., et al. (2022) High-Performance BiVO4 Photoanodes Cocata-lyzed with Bilayer Metal–Organic Frameworks for Photoelectrochemical Application. Journal of Colloid and Interface Science, 619, 2186-2190.
https://doi.org/10.1016/j.jcis.2022.03.143 |
[3] | 刘艺炜. 可见光响应的BiVO4光催化剂的可控制备和性能研究[D]: [硕士学位论文]. 天津: 天津大学, 2020. |
[4] | Chao, M.X. and Sheng, Z.Z. (2016) Bis-muth-Based Photocatalytic Semiconductors: Introduction, Challenges and Possible Approaches. Journal of Molecular Catalysis A: Chemical, 423, 533-549.
https://doi.org/10.1016/j.molcata.2016.07.030 |
[5] | Kudo, A., Omori, K. and Kato, H. (1999) A Novel Aqueous Process for Preparation of Crystalform Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. Journal of the American Chemical Society, 121, 11459-11467. https://doi.org/10.1021/ja992541y |
[6] | Kumar, O.P., Ashiq, M.N. and Ahmad, M. (2020) Silver and Yttrium-Doped Bismuth Vanadate for Photoluminescent Activity and Boosted Visible Light-Induced Photodegradation. Journal of Materials Science: Materials in Electronics, 819, 218-219. |
[7] | Feng, H.Q. (2020) Ad-vances in Preparation Methods of Bismuth-Based Photocatalysts. Chemical Engineering Journal, 414, 177-179. https://doi.org/10.1016/j.cej.2020.127877 |
[8] | Guo, W.W., Jie, L. and Zeng, J.W. (2022) Hydrothermal Synthesis of Ni-Doped Hydrangea-Like Bi2WO6 and the Enhanced Gas Sensing Property to N-Butanol. Sensors and Actuators B Chemical, 357, 1396-1420.
https://doi.org/10.1016/j.snb.2022.131396 |
[9] | Wang, X., Yan, J. and Luo, Y.M. (2021) Enhanced Degradation of Carbamazepine by BiOX (Cl, Br, I) Composite Photocatalysts under Simulated Solar Light Irradiation. Chemical Physics Letters, 787, 1468-1496.
https://doi.org/10.1016/j.cplett.2021.139222 |
[10] | 刘欣, 李家科, 罗文静, 等. 蔗糖辅助水热合成BiVO4及其光催化性能研究[J]. 人工晶体学报, 2019, 48(8): 1457-1461. |
[11] | 袁龙, 胡志燕, 袁梦, 等. 溶胶-凝胶法制备BiVO4及其热致变色特性[J]. 吉林师范大学学报(自然科学版), 2021, 42(2): 16-21. |
[12] | 陈仕祥. 微乳液法制备Fe2O3/TiO2和SiO2/TiO2复合光催化剂及其性能研究[D]: [硕士学位论文]. 武汉: 武汉科技大学, 2012. |
[13] | 彭秧, 侯林瑞, 原长洲. 砖形BiVO4微米棒光催化剂的制备及其光催化性能[J]. 应用化学, 2008, 25(4): 485-488. |
[14] | 戈磊, 张宪华. 微乳液法合成新型可见光催化剂BiVO4及光催化性能研究[J]. 无机材料学报, 2009, 24(3): 453-456. |
[15] | 许杰, 郝辰春, 王文忠. 晶相、形貌和尺寸可控的BiVO4微球控制合成[J]. 化工新型材料, 2016, 44(4): 137-139. |
[16] | Can, L., Fan, F., Jie, J., et al. (2021) Boosting Carrier Dynamics of BiVO4 Photoanode via Heterostructuring with Ultrathin BiOI Nanosheets for Enhanced Solar Water Splitting. Journal of Materials Science & Technology, 79, 1798-1800.
https://doi.org/10.1016/j.jmst.2020.11.037 |
[17] | 贾锦超. 可见光催化剂BiVO4的形貌调控及光催化性能研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2020. |
[18] | Benjamin, O., Omotayo, O.A. and Arotiba, O. (2020) Bismuth Vanadate in Photoelectrocatalytic Water Treatment Systems for the Degradation of Organics: A Re-view on Recent Trends. Journal of Electroanalytical Chemistry, 878, 188-189. https://doi.org/10.1016/j.jelechem.2020.114724 |
[19] | 史苏琦, 张守臣, 张迪嘉, 等. BiVO4晶面调控制备及其降解四环素类抗生素性能研究[J]. 无机盐工业, 2021, 53(11): 114-121. |
[20] | Zhang, X.F., Zhang, Y.B., Quan, X., et al. (2009) Preparation of Ag Doped BiVO4 Film and Its Enhanced Photoelectrocatalytic (PEC) Ability of Phenol Degradation under Visible Light. Journal of Hazard Materials, 167, 911-914.
https://doi.org/10.1016/j.jhazmat.2009.01.074 |
[21] | Washington, R.S., Lucas, R.G., Gustavo, T.Z.L., et al. (2022) Ternary Oxide CuWO4/BiVO4/FeCoOx Films for Photoelectrochemical Water Oxidation: Insights into the Electronic Structure and Interfacial Band Alignment. ACS Applied Materials & Interfaces, 187, 938-944. |
[22] | Siavash, B., Saeed, S., Eric, A., et al. (2022) One-step Preparation of Ag-Incorporated BiVO4 Thin Films: Plas-mon-Heterostructure Effect in Photocatalytic Activity Enhancement. Applied Surface Science, 580, 1498-1523.
https://doi.org/10.1016/j.apsusc.2021.152253 |
[23] | 庞欣. 基于BiVO4的复合结构催化剂的构筑及其光催化活性调控[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2020. |
[24] | 魏琰. BiVO4材料压电催化去除水中污染物及机理研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2020. |
[25] | 高宇晨. Bi-VO4-氮化碳复合材料的制备及其光催化降解对硝基苯酚机理的研究[D]: [硕士学位论文]. 长春: 长春理工大学, 2015. |
[26] | 许超奇. BiOCl基光催化复合材料的构建与性能研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2017. |
[27] | 费乾峰, 王臣, 杨本宏. 溶胶-凝胶法合成分级结构BiVO4:W及光催化活性[J]. 内蒙古工业大学学报(自然科学版), 2018, 37(5): 355-361. |