SLCO1B1 and NAT2 polymorphisms have been associated with the variability of Rifampicin and Isoniazid pharmacokinetic
(PK). The objective of this study was to identify in African patients with
tuberculosis (TB) or TB/HIVco-infection,
the SLCO1B1 and NAT2
polymorphisms, associated with the variability of Rifampicin and
Isoniazid pharmacokinetic. TB or TB/HIV co-infected patients from Benin,
Guinea, Senegal, and South Africa were included in this study. The blood
samples collected were stored at -80˚C until DNA extractions. The DNA extracts were then frozen at -80˚C after quality control. Double stranded DNA of
the samples were quantified using a fluorimetric method to select suitable
samples for the preparation of 96-well microplates, containing 100 μl of DNA
extract per well at the concentration of 20 ng/μl.
Illumina HumanOmniExpress-24 v1.2 microarray genotyping was performed by an external vendor. The genotyping data
were analyzed and the polymorphisms with a call rate < 95% or presenting a
departure from the
References
[1]
Dompreh, A., Tang, X., Zhou, J., Yang, H., Topletz, A., Ahwireng, E.A., et al. (2018) Effect of Genetic Variation of nat2 on Isoniazid and slco1b1 and ces2 on Rifampin Pharmacokinetics in Ghanaian Children with Tuberculosis. Antimicrobial Agents and Chemotherapy, 62, e02099-17. https://doi.org/10.1128/AAC.02099-17
[2]
Iseman, M.D. (2002) Tuberculosis Therapy: Past, Present and Future. European Respiratory Journal, 20, 87-94. https://doi.org/10.1183/09031936.02.00309102
[3]
Weiner, M., Peloquin, C., Burman, W., Luo, C.C., Engle, M., Prihoda, T.J., et al. (2010) Effects of Tuberculosis, Race, and Human Gene SLCO1B1 Polymorphisms on Rifampin Concentrations. Antimicrobial Agents and Chemotherapy, 54, 4192-4200. https://doi.org/10.1128/AAC.00353-10
[4]
Li, L.M., Chen, L., Deng, G.H., Tan, W.T., Dan, Y.J., Wang, R.Q., et al. (2012) SLCO1B1*15 Haplotype Is Associated with Rifampin-Induced Liver Injury. Molecular Medicine Reports, 6, 75-82. https://doi.org/10.3892/mmr.2012.900
[5]
Björnsson, E.S. (2015) Drug-Induced Liver Injury: An Overview over the Most Critical Compounds. Archives of Toxicology, 89, 327-334. https://doi.org/10.1007/s00204-015-1456-2
[6]
Andrade, R., Agundez, J., Lucena, M., Martinez, C., Cueto, R. and Garcia-Martin, E. (2009) Pharmacogenomics in Drug Induced Liver Injury. Current Drug Metabolism, 10, 956-970. https://doi.org/10.2174/138920009790711805
[7]
Stirnimann, G., Kessebohm, K. and Lauterburg, B. (2010) Liver Injury Caused by Drugs: An Update. Swiss Medical Weekly, 140, 18-24. https://doi.org/10.4414/smw.2010.13080
Teixeira, R.L.F., Renata Gomes Morato, P.H.C., Muniz, L.M.K., Moreira, A.S.R., Afrânio Lineu Kritski, F.C.Q.M., Suffys, P.N., et al. (2011) Genetic Polymorphisms of NAT2, CYP2E1 and GST Enzymes and the Occurrence of Antituberculosis Drug-Induced Hepatitis in Brazilian TB Patients. Memórias do Instituto Oswaldo Cruz, 106, 716-724. https://doi.org/10.1590/S0074-02762011000600011
[10]
McDonagh, E.M., Boukouvala, S., Aklillu, E., Hein, D.W., Altman, R.B. and Klein, T.E. (2014) PharmGKB Summary: Very Important Pharmacogene Information for N-acetyltransferase 2. Pharmacogenetics and Genomics, 24, 409-425. https://doi.org/10.1097/FPC.0000000000000062
[11]
Thomas, L., Miraj, S.S., Surulivelrajan, M., Varma, M., Sanju, C.S.V. and Rao, M. (2020) Influence of Single Nucleotide Polymorphisms on Rifampin Pharmacokinetics in Tuberculosis Patients. Antibiotics, 9, Article No. 307. https://doi.org/10.3390/antibiotics9060307
[12]
Chigutsa, E., Visser, M.E., Swart, E.C., Denti, P., Pushpakom, S., Egan, D., et al. (2011) The SLCO1B1 rs4149032 Polymorphism Is Highly Prevalent in South Africans and Is Associated with Reduced Rifampin Concentrations: Dosing Implications. Antimicrobial Agents and Chemotherapy, 55, 4122-4127. https://doi.org/10.1128/AAC.01833-10
[13]
Merle, C.S., Fielding, K., Sow, O.B., Gninafon, M., Lo, M.B., Mthiyane, T., et al. (2014) A Four-Month Gatifloxacin-Containing Regimen for Treating Tuberculosis. The New England Journal of Medicine, 371, 1588-1598. https://doi.org/10.1056/NEJMoa1315817
[14]
Sanni, S., Wachinou, A.P., Simone, C., Merle, C., Bekou, K.W. and Esse, M. (2021) Hepatic Safety of High-Dose Rifampicin for Tuberculosis Treatment in TB/HIV Co-Infected Patients: A Randomized Clinical Trial. Archives of Pharmacy Practice, 12, 66-72. https://doi.org/10.51847/PLywKP28YD
[15]
Coleman, J.R.I., Euesden, J., Patel, H., Folarin, A.A., Newhouse, S. and Breen, G. (2016) Quality Control, Imputation and Analysis of Genome-Wide Genotyping Data from the Illumina Human Core Exome Microarray. Briefings in Functional Genomics, 15, 298-304. https://doi.org/10.1093/bfgp/elv037
[16]
Chan, S.L., Chua, A.P.G., Aminkeng, F., Chee, C.B.E., Jin, S., Loh, M., et al. (2017) Association and Clinical Utility of NAT2 in the Prediction of Isoniazid-Induced Liver Injury in Singaporean Patients. PLOS ONE, 12, e0186200. https://doi.org/10.1371/journal.pone.0186200
[17]
Debette, S. (2012) Comment lire une étude d’association génétique pangénomique (GWAS)? Sang Thrombose Vaisseaux, 24, 240-247. https://doi.org/10.1684/stv.2012.0692
[18]
Uffelmann, E., Huang, Q.Q., Munung, N.S., de Vries, J., Okada, Y., Martin, A.R., et al. (2021) Genome-Wide Association Studies. Nature Reviews Methods Primers, 1, Article No. 59. https://doi.org/10.1038/s43586-021-00056-9
[19]
Chang, C.C., Chow, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell, S.M. and Lee, J.J. (2015) Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. Gigascience, 4, Article No. 7. https://doi.org/10.1186/s13742-015-0047-8
[20]
Huddart, R., Fohner, A.E., Whirl-Carrillo, M., Wojcik, G.L., Gignoux, C.R., Popejoy, A.B., et al. (2019) Standardized Biogeographic Grouping System for Annotating Populations in Pharmacogenetic Research. Clinical Pharmacology & Therapeutics, 105, 1256-1262. https://doi.org/10.1002/cpt.1322
[21]
Gurdasani, D., Carstensen, T., Tekola-Ayele, F., Pagani, L., Tachmazidou, I., Hatzikotoulas, K., et al. (2015) The African Genome Variation Project Shapes Medical Genetics in Africa. Nature, 517, 327-332. https://doi.org/10.1038/nature13997
[22]
Aït Moussa, L., El Bouazzi, O., Serragui, S., Soussi Tanani, D., Soulaymani, A. and Soulaymani, R. (2016) Rifampicin and Isoniazid Plasma Concentrations in Relation to Adverse Reactions in Tuberculosis Patients: A Retrospective Analysis. Therapeutic Advances in Drug Safety, 7, 239-247. https://doi.org/10.1177/2042098616667704
[23]
Wilkins, J.J., Savic, R.M., Karlsson, M.O., Langdon, G., McIlleron, H., Pillai, G., et al. (2008) Population Pharmacokinetics of Rifampin in Pulmonary Tuberculosis Patients, Including a Semimechanistic Model to Describe Variable Absorption. Antimicrobial Agents and Chemotherapy, 52, 2138-2148. https://doi.org/10.1128/AAC.00461-07
[24]
Kim, E.S., Kwon, B.S., Park, J.S., Chung, J.Y., Seo, S.H., Park, K.U., et al. (2021) Relationship among Genetic Polymorphism of SLCO1B1, Rifampicin Exposure and Clinical Outcomes in Patients with Active Pulmonary Tuberculosis. British Journal of Clinical Pharmacology, 87, 3492-3500. https://doi.org/10.1111/bcp.14758
[25]
Allegra, S., Fatiguso, G., Calcagno, A., Baietto, L., Motta, I., Favata, F., et al. (2017) Role of Vitamin D Pathway Gene Polymorphisms on Rifampicin Plasma and Intracellular Pharmacokinetics. Pharmacogenomics, 18, 875-890. https://doi.org/10.2217/pgs-2017-0176
[26]
Zabost, A., Brzezińska, S., Kozińska, M., Błachnio, M., Jagodziński, J., Zwolska, Z., et al. (2013) Correlation of N-acetyltransferase 2 Genotype with Isoniazid Acetylation in Polish Tuberculosis Patients. BioMed Research International, 2013, Article ID: 853602. https://doi.org/10.1155/2013/853602
[27]
Zhang, M., Wang, S., Wilffert, B., Tong, R., van Soolingen, D., van den Hof, S., et al. (2018) The Association between the NAT2 Genetic Polymorphisms and Risk of DILI during Anti-TB Treatment: A Systematic Review and Meta-Analysis. British Journal of Clinical Pharmacology, 84, 2747-2760. https://doi.org/10.1111/bcp.13722
[28]
Mthiyane, T., Millard, J., Adamson, J., Balakrishna, Y., Connolly, C., Owen, A., et al. (2020) N-acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and N-acetyl-isoniazid Pharmacokinetics during Antituberculosis Treatment. Antimicrobial Agents and Chemotherapy, 64, e02376-19. https://doi.org/10.1128/AAC.02376-19
[29]
Herrera-Rodulfo, A., Carrillo-Tripp, M., Laura Yeverino-Gutierrez, M., Peñuelas-Urquides, K., Adiene González-Escalante, L., Bermúdez de León, M., et al. (2021) NAT2 Polymorphisms Associated with the Development of Hepatotoxicity after First-Line Tuberculosis Treatment in Mexican Patients: From Genotype to Molecular Structure Characterization. Clinica Chimica Acta, 519, 153-162. https://doi.org/10.1016/j.cca.2021.04.017
[30]
Yuliwulandari, R., Susilowati, R.W., Wicaksono, B.D., Viyati, K., Prayuni, K., Razari, I., et al. (2016) NAT2 Variants Are Associated with Drug-Induced Liver Injury Caused by Anti-Tuberculosis Drugs in Indonesian Patients with Tuberculosis. Journal of Human Genetics, 61, 533-537. https://doi.org/10.1038/jhg.2016.10
[31]
Taja-Chayeb, L., Agúndez, J.A., Miguez-Muñoz, C., Chavez-Blanco, A. and Dueñas-Gonzalez, A. (2012) Arylamine N-acetyltransferase 2 Genotypes in a Mexican Population. Genetics and Molecular Research, 11, 1082-1092. https://doi.org/10.4238/2012.April.27.7
[32]
Higuchi, N., Tahara, N., Yanagihara, K., Fukushima, K., Suyama, N., Inoue, Y., et al. (2007) NAT2*6A, a Haplotype of the N-acetyltransferase 2 Gene, Is an Important Biomarker for Risk of Anti-Tuberculosis Drug-Induced Hepatotoxicity in Japanese Patients with Tuberculosis. World Journal of Gastroenterology, 13, 6003-6008. https://doi.org/10.3748/wjg.v13.45.6003