A short history of the different kinds of nuclear decay modes (αdecay, β decay, γ decay, induced
fission, spontaneous fission, ternary and multi-cluster fission, fissioning
shape isomers, and cluster radioactivities) is presented below, showing how the
important research activities at the end of 19th century and the beginning of
the 20th one, lead to the discovery of atomic nucleus by Ernest Rutherford in
1911. We shall start with X-rays—a precursor of all these phenomena. The first
observation of alpha-, beta-, and gamma radiations was made by Antoine Henri
Becquerel in 1896, who observed that beta-rays are deviated by a magnetic
field. Marie and Pierre Curie coined the name radioactivity after they produced
two new elements: polonium and radium. Alpha particles were first described in
the investigations of radioactivity by Ernest Rutherford in 1899, and by 1907
they were identified as He2+ ions. In 1928, George Gamow had solved
the theory of alpha decay via tunneling through a potential barrier. The alpha
particle is trapped in a potential well by the nucleus. According to the
principles of quantum mechanics, it has a small probability of tunneling
through the barrier and escape from the nucleus. Gamow solved a model potential
for the nucleus and derived, from first principles, a relationship between the
half-life of the decay, and the energy of the emission, which had been
previously discovered empirically, and was known as the Geiger-Nuttall law.
References
[1]
Agar, J. (2012). Science in the Twentieth Century and Beyond. Polity Press.
[2]
Akrawy, D. T., Poenaru, D. N., Ahmed, A. H., & Sihver, L. (2022). Alpha-Decay Half-Lives New Semi-Empirical Relationship Including Asymmetry, Angular Momentum and Shell Effects. Nuclear Physics A, 1021, Article ID: 122419.
https://doi.org/10.1016/j.nuclphysa.2022.122419
[3]
Amaldi, E. (1984). From the Discovery of the Neutron to the Discovery of Nuclear Fission. Physics Reports, 111, 1-331. https://doi.org/10.1016/0370-1573(84)90214-X
[4]
Bao, X., Zhang, H., Royer, G., & Li, J. (2013). Spontaneous Fission Half-Lives of Heavy and Superheavy Nuclei within A Generalized Liquid Drop Model. Nuclear Physics A, 906, 1-13. https://doi.org/10.1016/j.nuclphysa.2013.03.002
[5]
Becquerel, H. (1896). Sur les radiations émises par phosphorescence. Comptes Rendus, 122, 420-421.
[6]
Björnholm, S., & Lynn, J. E. (1980). The Double-Humped Fission Barrier. Review of Modern Physics, 52, 725-931. https://doi.org/10.1103/RevModPhys.52.725
[7]
Bohr, N., & Wheeler, J. (1939). The Mechanism of Nuclear Fission. Physical Review, 56, 426-450. https://doi.org/10.1103/PhysRev.56.426
[8]
Bonetti, R., & Guglielmetti, A. (2007). Cluster Radioactivity: An Overview after Twenty Years. Romanian Reports in Physics, 59, 301-310.
[9]
Borzendowski, J. (2009). Sterling Biographies: Marie Curie Mother of Modern Physics. Sterling Publishing Company Inc.
[10]
Brack, M., Damgaard, J., Jensen, A., Pauli, H. C., Strutinsky, V. M., & Wong, G. Y. (1972). Funny Hills: The Shell Correction Approach to Nuclear Shell Effects and Its Applications to the Fission Process. Review of Modern Physics, 44, 320-405.
https://doi.org/10.1103/RevModPhys.44.320
[11]
Britt, H. C. (1973). Properties of Fission Isomers. Atomic Data and Nuclear Data Tables, 12, 407-414. https://doi.org/10.1016/0092-640X(73)90001-6
[12]
Britt, H. C., Burnett, S., Erkkila, B., Lynn, J., & Stein, W. (1971). Systematics of Spontaneously Fissioning Isomers by the (d, p) Reaction. Physical Review C, 4, 1441-1465.
https://doi.org/10.1103/PhysRevC.4.1444
[13]
Brosa, U., & Knitter, H. H. (1990). Fragments, Neutrons, and Gammas in the Fission of 252Cf: A Unified and Precise Description. In H. Maerten, & D. Seeliger (Eds.), Proceedings of the International Symposium on Physics and Chemistry of Fission, Gaussig 1988 (pp. 145-154). Preprint Zfk-732.
[14]
Buck, B., & Merchant, A. C. (1989). A Consistent Cluster Model Treatment of Exotic Decays and Alpha Decays from Heavy Nuclei. Journal of Physics G: Nuclear and Particle Physics, 15, 615-635. https://doi.org/10.1088/0954-3899/15/5/015
[15]
Buck, B., Merchant, A. C., & Perez, S. M. (1990). New Look at α Decay of Heavy Nuclei. Physical Review Letters, 65, 2975-2977. https://doi.org/10.1103/PhysRevLett.65.2975
[16]
Buck, B., Merchant, A. C., & Perez, S. M. (1991a). Ground State to Ground State Alpha Decays of Heavy Even-Even Nuclei. Journal of Physics G: Nuclear and Particle Physics, 17, 1223-1235. https://doi.org/10.1088/0954-3899/17/8/012
[17]
Buck, B., Merchant, A. C., & Perez, S. M. (1991b). Recent Developments in the Theory of Alpha Decay. Modern Physics Letters A, 6, 2453-2461.
https://doi.org/10.1142/S0217732391002888
[18]
Buck, B., Merchant, A. C., & Perez, S. M. (1992a). α Decay Calculations with a Realistic Potential. Physical Review C, 45, 2247-2253. https://doi.org/10.1103/PhysRevC.45.2247
[19]
Buck, B., Merchant, A. C., & Perez, S. M. (1992b). Favoured Alpha Decays of Odd-Mass Nuclei. Journal of Physics G: Nuclear and Particle Physics, 18, 143-164.
https://doi.org/10.1088/0954-3899/18/1/012
[20]
Buck, B., Merchant, A. C., & Perez, S. M. (1993). Half-Lives of Favored Alpha Decays from Nuclear Ground States. Atomic Data and Nuclear Data Tables, 54, 53-73.
https://doi.org/10.1006/adnd.1993.1009
Businaro, U. L., & Gallone, S. (1955). Saddle Shapes Thresholds Energies and Fission Asymmetry on the Liquid Drop Model. Nuovo Cimento, 1, 1277-1279.
https://doi.org/10.1007/BF02731434
[23]
Butler, P. A., Daniel, R., Irving, A. D., Morrison, T. P., Nolan, P. J., & Metag, V. (1980). Experimental Upper Limit for a Gamma Branch from the 236U Shape Isomer. Journal of Physics G: Nuclear Physics, 6, 1165. https://doi.org/10.1088/0305-4616/6/9/012
[24]
Carjan, N. (1976). Sur l’origine des alphas de scission. Journal de Physique, 37, 1279-1285.
https://doi.org/10.1051/jphys:0197600370110127900
[25]
Carjan, N. (1986). Effect of Dissipation on Ternary Fission in Very Heavy Nuclear System. Nuclear Physics A, 452, 381-397. https://doi.org/10.1016/0375-9474(86)90204-6
[26]
Curie, E., & Sheean, V. (1999). Madame Curie: A Biography. Turtleback Books.
[27]
Curie, I., & Joliot, F. (1934). Un nouveau type de radioactivité. Comptes Rendus, 198, 254-256.
[28]
Curie, M., Curie, P., & Bémont, M. (1898). Sur une nouvelle substance fortement radio-active contenue dans la pechblende. Comptes Rendus de l’Académie des Sciences, 127, 1215-1217.
[29]
D’Arrigo, A., Eremin, N. V., Fazio, G., Giardina, G., Glotova, M. G., Klochko, T. V., Sacchi, M., & Taccone, A. (1994). Investigation of Bremsstrahlung Emission in α-Decay of Heavy Nuclei. Physics Letters B, 332, 25-30.
https://doi.org/10.1016/0370-2693(94)90853-2
[30]
Delion, D. (2010). Theory of Particle and Cluster Emission. In Lecture Notes in Physics (Vol. 819). Springer. https://doi.org/10.1007/978-3-642-14406-6
[31]
Delion, D. S., Insolia, A., & Liotta, R. J. (1992a). Alpha Width in Deformed Nuclei: Microscopic Approach. Physical Review C, 46, 1346-1354.
https://doi.org/10.1103/PhysRevC.46.1346
[32]
Delion, D. S., Insolia, A., & Liotta, R. J. (1992b). Anisotropy in Alpha Decay of Odd-Mass Deformed Nuclei. Physical Review C, 46, 884-888.
https://doi.org/10.1103/PhysRevC.46.884
[33]
Delion, D. S., Insolia, A., & Liotta, R. J. (1992c). Proton-Neutron Correlations and Microscopic Description of Alpha Decay. Nuclear Physics A, 549, 407-419.
https://doi.org/10.1016/0375-9474(92)90087-Z
[34]
Diehl, H., & Greiner, W. (1974). Theory of Ternary Fission in the Liquid Drop Model. Nuclear Physics A, 229, 29-46. https://doi.org/10.1016/0375-9474(74)90673-3
[35]
Dodig-Crnkovic, G., Janouch, F. A., Liotta, R. J., & Sibanda, L. J. (1985). Absolute α-Decay Rates in Po Isotopes. Nuclear Physics A, 444, 419-435.
https://doi.org/10.1016/0375-9474(85)90460-9
[36]
Fermi, E. (1932). Quantum Theory of Radiation. Reviews of Modern Physics, 4, 87-132.
https://doi.org/10.1103/RevModPhys.4.87
[37]
Fermi, E. (1934). Tentativo di una teoria dei raggi beta. Il Nuovo Cimento, 9, 1-19.
https://doi.org/10.1007/BF02959820
[38]
Fermi, E. (1968). Theory of Beta Decay. American Journal of Physics, 36, 1150.
https://doi.org/10.1119/1.1974382
[39]
Flerov, G. N., & Petrjak, K. A. (1940). Spontaneous Fission of Uranium. Physical Review, 58, 89. https://doi.org/10.1103/PhysRev.58.89.2
[40]
Flerov, G. N., Ivanov, E., Martalogu, N., Pleve, A. A., Polikanov, S. M., Poenaru, D. N., & Vilcov, N. (1965a). The Excitation Function for the 14 ms Fissioning Isomer from Deuteron Irradiation of Pu. In Physics and Chemistry of Fission (Vol. I, pp. 307-314). IAEA.
[41]
Flerov, G. N., Ivanov, E., Martalogu, N., Pleve, A. A., Polikanov, S. M., Poenaru, D. N., & Vilcov, N. (1965b). Excitation Function and Isomeric Yield Ratio for the 14 ms Fissioning Isomer from Deuteron Irradiation of Pu. Revue Roumaine de Physique, 10, 217-224.
[42]
Flerov, G. N., Pleve, A. A., Polikanov, S. M., Tretyakova, S. P., Martalogu, N., Poenaru, D., Sezon, M., Vilcov, I., & Vilcov, N. (1967a). Excitation Energy of Spontaneously Fissioning Isomers. Nuclear Physics, 97, 444-448.
https://doi.org/10.1016/0375-9474(67)90498-8
[43]
Flerov, G. N., Martalogu, N., Pleve, A. A., Polikanov, S. M., Poenaru, D. N., & Vilcov, N. (1967b). Proton Induced Reactions to Populate Spontaneously Fissioning Isomers. Revue Roumaine de Physique, 12, 109-116.
[44]
Fliessbach, T. (1975). The Reduced Width Amplitude in the Reaction Theory for Composite Particles. Zeitschrift für Physik A, 272, 39-46. https://doi.org/10.1007/BF01408426
[45]
Fliessbach, T. (1976a). Alpha-Spectroscopic Factors in the DWBA. Zeitschrift für Physik A, 278, 353-363. https://doi.org/10.1007/BF01437749
[46]
Fliessbach, T. (1976b). Antisymmetrization in the Alpha-Nucleus System. Zeitschrift für Physik A, 277, 151-158. https://doi.org/10.1007/BF01433707
[47]
Fliessbach, T., & Manakos, P. (1977). Alpha-Spectroscopic Factors for Light Nuclei. Journal of Physics G: Nuclear Physics, 3, 643-656.
https://doi.org/10.1088/0305-4616/3/5/012
[48]
Fliessbach, T., & Mang, H. J. (1976). On Absolute Values of α-Decay Rates. Nuclear Physics A, 263, 75-85. https://doi.org/10.1016/0375-9474(76)90184-6
[49]
Fliessbach, T., & Okabe, S. (1985). Surface Alpha-Clustering in the Lead Region. Zeitschrift für Physik A, 320, 289-294. https://doi.org/10.1007/BF01881277
[50]
Fliessbach, T., Mang, H. J., & Rasmussen, J. O. (1976). Normalized Shell Model Alpha Decay Theory Applied to Unfavored Decay. Physical Review C, 13, 1318-1323.
https://doi.org/10.1103/PhysRevC.13.1318
[51]
Fricke, B., & Greiner, W. (1969). On the Chemistry of Superheavy Elements Around Z = 164. Physics Letters B, 30, 317-319. https://doi.org/10.1016/0370-2693(69)90490-0
[52]
Fröman, P. O. (1957). Alpha Decay of Deformed Nuclei. K. Dan. Vidensk. Selsk. Mat. Fys. Skr, 1, 3.
[53]
Galeriu, D., Marinescu, M., Poenaru, D. N., Vilcov, I. A., Vilcov, N., Gangrsky, Y. P., Hien, P. Z., & Khan, N. C. (1974). Delayed Fission Fragment Angular Distributions in Some Alpha-Particle Induced Reactions. In Proceedings of the Symposium on Physics and Chemistry of Fission (Vol. I, pp. 297-304). IAEA.
[54]
Gales, S., Hourani, E., Hussonnois, M., Schapira, J. P., Stab, L., & Vergnes, M. (1984). Exotic Nuclear Decay of 223Ra by Emission of 14C Nuclei. Physical Review Letters, 53, 759-762. https://doi.org/10.1103/PhysRevLett.53.759
[55]
Gamow, G. (1928). Zur quantentheorie des atomkernes. Zeitschrift für Physik, 51, 204-212.
https://doi.org/10.1007/BF01343196
[56]
Geiger, H., & Nuttal, J. M. (1911). LVII. The Ranges of the α Particles from Various Radioactive Substances and a Relation between Range and Period of Transformation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 22, 613-621. https://doi.org/10.1080/14786441008637156
[57]
Gherghescu, R. A. (2003). Deformed Two Center Shell Model. Physical Review C, 67, Article ID: 014309. https://doi.org/10.1103/PhysRevC.67.014309
[58]
Gherghescu, R. A., Carjan, N., & Poenaru, D. N. (2011). Binary and Ternary Fission Models. In F. J. Hambsch, & F N. Carjan (Eds.), THEORY-1, Proceedings of the Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, Sinaia, 2010. JRC Scientific and Technical Report (pp. 35-39, EUR 24802 EN, JRC 64789). European Commission.
[59]
Gherghescu, R. A., Poenaru, D. N., & Greiner, W. (2008). Binary and Ternary Emission from Superheavy Nuclei. International Journal of Modern Physics E, 17, 2221-2225.
https://doi.org/10.1142/S0218301308011379
[60]
Glasser, O. (1993). Wilhelm Conrad Röntgen and the Early History of the Roentgen Rays. Norman Publishing.
[61]
Goldansky, V. I. (1966). Modes of Radioactive Decay Involving Proton Emission. Annual Review of Nuclear Science, 16, 1-30.
https://doi.org/10.1146/annurev.ns.16.120166.000245
[62]
Gönnenwein, F., Jesinger, P., Mutterer, M., Trzaska, W. H., Petrov, G., Gagarski, A. M., Nesvizhevski, V., & Geltenbort, P. (2003). Quaternary Fission. Acta Physica Hungarica (A) Heavy Ion Physics, 18, 419-425. https://doi.org/10.1556/APH.18.2003.2-4.52
[63]
Greiner, W., & Mosel, U. (1966). Memorandum zur Errichtung eines gemeinsame Ausbildungszentrum für Kernphysik Hessicher Hochschulen. Universität Frankfurt am Main.
[64]
Greiner, W., & Poenaru, D. N. (2010). Chapter 5. Neutron Rich Long-Lived Superheavies. In M. Brenner (Ed.), Cluster Structure of Atomic Nuclei (pp. 119-146). Research Signpost.
[65]
Greiner, W., Ivaşcu, M., Poenaru, D. N., & Săndulescu, A. (1989). Chapter 8. Cluster Radioactivities. In D. A. Bromley (Ed.), Treatise on Heavy Ion Science (Vol. 8, pp. 641-722). Plenum Press. https://doi.org/10.1007/978-1-4613-0713-6_8
[66]
Grumann, J., Mosel, U., Fink, B., & Greiner, W. (1969). Investigation of the Stability of Superheavy Nuclei around Z = 114 and Z = 164. Zeitschrift für Physik, 228, 371-386.
https://doi.org/10.1007/BF01406719
[67]
Gurney, R. W., & Condon, E. U. (1929). Quantum Mechanics and Radioactive Disintegration. Physical Review, 33, 127-140. https://doi.org/10.1103/PhysRev.33.127
[68]
Gurney, R., & Condon, E. (1928). Wave Mechanics and Radioactive Disintegration. Nature, 122, 439. https://doi.org/10.1038/122439a0
[69]
Haase, A., Landwehr, G., & Umbach, E. (Eds.) (1997). Röntgen Centennial: X-Rays in Natural and Life Sciences. World Scientific Publishing. https://doi.org/10.1142/3428
[70]
Habs, D., Metag, V., Specht, H., & Ulfert, G. (1977). Quadrupole Moment of the 8-μs Fission Isomer in 239Pu. Physical Review Letters, 38, 387-389.
https://doi.org/10.1103/PhysRevLett.38.387
[71]
Hahn, J., Lustig, H. J., & Greiner, W. (1977). Light-Particle-Accompanied Fission and the Three-Center Shell-Model. Zeitschrift für Naturforschung A, 32, 215-222.
https://doi.org/10.1515/zna-1977-3-401
[72]
Hamilton, J. H., Hofmann, S., & Oganessian, Y. T. (2013). Search for Superheavy Nuclei. Annual Review of Nuclear and Particle Science, 63, 383-405.
https://doi.org/10.1146/annurev-nucl-102912-144535
[73]
Harada, K. (1961). Alpha-Particle Reduced Widths in Heavy Nuclei. Progress of Theoretical Physics, 26, 667-679. https://doi.org/10.1143/PTP.26.667
[74]
Herrmann, G. (1988). Synthesis of the Heaviest Chemical Elements—Results and Perspectives. Angewandte Chemie International Edition, 27, 1417-1436.
https://doi.org/10.1002/anie.198814173
[75]
Herrmann, G. (1989). Discovery and Confirmation of Fission. Nuclear Physics A, 502, 141-158. https://doi.org/10.1016/0375-9474(89)90659-3
[76]
Hirsch, M., Staudt, A., Muto, K., & Klapdor-Kleingrothaus, H. V. (1993). Microscopic Prediction of β+/EC-Decay Half-Lives. Atomic Data and Nuclear Data Tables, 53, 165-193. https://doi.org/10.1006/adnd.1993.1004
[77]
Hofmann, D. C., Hamilton, T. M., & Lane, M. R. (1996). Chap. 10. Spontaneous Fission. In D. N. Poenaru (Ed.), Nuclear Decay Modes (pp. 393-432). Institute of Physics Publishing.
[78]
Hofmann, S. (1996). Proton Radioactivity, Chap. 3. In Nuclear Decay Modes (pp. 143-203). IOP.
[79]
Hofmann, S., & Münzenberg, G. (2000). The Discovery of the Heaviest Elements. Reviews of Modern Physics, 72, 733-767. https://doi.org/10.1103/RevModPhys.72.733
[80]
Hofmann, S., Reisdorf, W., Münzenberg, G., Heßberger, F. P., Schneider, J. R. H., & Armbruster, P. (1982). Proton Radioactivity of 151Lu. Zeitschrift für Physik A Atoms and Nuclei, 305, 111-123. https://doi.org/10.1007/BF01415018
[81]
Hourani, E., & Hussonnois, M. (1989). Chapter 6. Discovery of the Radioactive Decay of 223Ra by C Emission and Experiments with the Magnetic Spectrometer Soleno. In D. N. Poenaru, & M. Ivaşcu (Eds.), Particle Emission from Nuclei, Vol. II: Alpha, Proton and Heavy Ion Radioactivities (pp. 171-187). CRC Press.
[82]
Hourani, E., Hussonnois, M., & Poenaru, D. N. (1989). Radioactivities by Light Fragment (C, Ne, Mg) Emission. Annales de Physique (Paris), 14, 311-345.
https://doi.org/10.1051/anphys:01989001403031100
[83]
Hulet, E. K. et al. (1986). Bimodal Symmetric Fission Observed in the Heaviest Elements. Physical Review Letters, 56, 313-316. https://doi.org/10.1103/PhysRevLett.56.313
[84]
Insolia, A., Curutchet, P., Liotta, R. J., & Delion, D. S. (1991). Microscopic Description of Alpha Decay of Deformed Nuclei. Physical Review C, 44, 545-547.
https://doi.org/10.1103/PhysRevC.44.545
[85]
Joliot, F., & Curie, I. (1934). Artificial Production of a New Kind of Radio-Element. Nature, 133, 201-202. https://doi.org/10.1038/133201a0
[86]
Kantele, J., Stöffl, W., Ussery, L. E., Decman, D. J., Henry, E. A., Estep, R. J., Hoff, R. W., & Mann, L. G. (1984). Reinvestigation of the Gamma Branch from the 238U Shape Isomer. Physical Review C, 29, 1693-1698. https://doi.org/10.1103/PhysRevC.29.1693
[87]
Krappe, H. J., & Nix, J. R. (1974). Modified Definition of the Surface Energy in the Liquid Drop Formula. In F. Mautner Markhof (Ed.), Proceedings International Symposium on Physics and Chemistry of Fission, Rochester 1973 (Vol. I, pp. 159-176). IAEA.
[88]
Krappe, H. J., & Pomorski, K. (2012). Theory of Nuclear Fission: A Textbook. In Lecture Notes in Physics (Vol. 838). Springer. https://doi.org/10.1007/978-3-642-23515-3
[89]
Krappe, H. J., Nix, J. R., & Sierk, A. J. (1979). Unified Nuclear Potential for Heavy-Ion Elastic Scattering, Fusion, Fission and Ground-State Masses and Deformations. Physical Review C, 20, 992-1013. https://doi.org/10.1103/PhysRevC.20.992
[90]
Kumar, K. (1989). Superheavy Elements. Adam Hilger.
[91]
Kutschera, W., Ahmad, I., Armato III, S. G., Friedman, A. M., Gindler, J. E., Henning, W., Ishii, T., Paul, M., & Rehm, K. E. (1985). Spontaneous 14C Emission from 223Ra. Physical Review C, 53, 2036-2042. https://doi.org/10.1103/PhysRevC.32.2036
[92]
Lane, A. M., & Thomas, R. G. (1958). R-Matrix Theory of Nuclear Reactions. Reviews of Modern Physics, 30, 257-353. https://doi.org/10.1103/RevModPhys.30.257
[93]
Lark, N. L., Sletten, G., Pedersen, J., & Bjørnholm, S. (1969). Spontaneously Fissioning Isomers in U, Np, Pu and Am Isotopes. Nuclear Physics A, 139, 481-500.
https://doi.org/10.1016/0375-9474(69)90273-5
[94]
Libert, J., Meyer, M., & Quentin, P. (1980). Spectroscopic Properties of 237,239Pu Fission Isomers from Self-Consistent Calculations. Physics Letters B, 95, 175-180.
https://doi.org/10.1016/0370-2693(80)90463-3
[95]
Loveland, W., Morrissey, D., & Seaborg, G. T. (2006). Modern Nuclear Chemistry. Wiley-Interscience. https://doi.org/10.1002/0471768626
[96]
Mang, H. J. (1957). Zur Theorie des α-Zerfalls (insbesondere der Kerne in der Umgebung von Pb208). Zeitschrift für Physik, 148, 582-592. https://doi.org/10.1007/BF01328709
[97]
Mang, H. J. (1960). Calculation of α-Transition Probabilities. Physical Review, 119, 1069-1075.
https://doi.org/10.1103/PhysRev.119.1069
[98]
Manimaran, K., & Balasubramaniam, M. (2009). Three-Cluster Model for the α-Accompanied Fission of Californium Nuclei. Physical Review C, 79, Article ID: 024610.
https://doi.org/10.1103/PhysRevC.79.024610
[99]
Marinov, A., Batty, C. J., Kilvington, A. I., Newton, G. W., Robinson, V. J., & Hemingway, J. H. (1971). Evidence for the Possible Existence of a Superheavy Element with Atomic Number 112. Nature, 229, 464-467. https://doi.org/10.1038/229464a0
[100]
Martin, B. R. (2011). Nuclear and Particle Physics: An Introduction (2nd ed.). John Wiley and Sons.
[101]
Maruhn, J. A., & Greiner, W. (1972). The Asymmetric Two-Center Shell Model. Zeitschrift für Physik, 251, 431-457. https://doi.org/10.1007/BF01391737
[102]
Meldner, H. (1966). Predictions of New Regions and Masses for Super-Heavy Nuclei from Calculations with Realistic Shell Model Single Particle Hamiltonian. Arkiv för Fysik, 36, 593.
[103]
Metag, V., Habs, D., & Specht, H. J. (1980). Spectroscopic Properties of Fission Isomers. Physics Reports, 65, 1-41. https://doi.org/10.1016/0370-1573(80)90006-X
[104]
Metag, V., Repnow, R., & von Brentano, P. (1971). Correlation between Fission Isomer Half-Lives and Liquid-Drop Model Parameters. Nuclear Physics A, 165, 289-304.
https://doi.org/10.1016/0375-9474(71)90762-7
[105]
Michaudon, A. (1973). Nuclear Fission. Plenum Press.
https://doi.org/10.1007/978-1-4615-9041-5_1
[106]
Molinié, P., & Boudia, S. (2009). Mastering Picocoulombs in the 1890s: The Curies’ Quartz-Electrometer Instrumentation, and How It Shaped Early Radioactivity History. Journal of Electrostatics, 67, 524-530. https://doi.org/10.1016/j.elstat.2009.01.031
[107]
Möller, P., Madland, D. G., Sierk, A. J., & Iwamoto, A. (2001). Nuclear Fission Modes and Fragment Mass Asymmetries in a Five-Dimensional Deformation Space. Nature, 409, 785-790. https://doi.org/10.1038/35057204
[108]
Morita, K. et al. (2007). Observation of Second Decay Chain from 278113. Journal of the Physical Society of Japan, 76, Article ID: 045001.
https://doi.org/10.1143/JPSJ.76.045001
[109]
Mosel, U., & Greiner, W. (1969). On the Stability of Superheavy Nuclei against Fission. Zeitschrift für Physik, 222, 261-282. https://doi.org/10.1007/BF01392125
[110]
Mutterer, M., & Theobald, J. P. (1996). Chapter 13. Particle-Accompanied Fission. In D. N. Poenaru (Ed.), Nuclear Decay Modes (pp. 487-522). Institute of Physics Publishing.
[111]
Myers, W. D., & Swiatecki, W. J. (1966). Nuclear Masses and Deformations. Nuclear Physics A, 81, 1-60. https://doi.org/10.1016/0029-5582(66)90639-0
[112]
Nilsson, S. G., Tsang, C. F., Sobiczewski, A., Szymański, Z., Wycech, S., Gustafson, C., Lamm, I., Möller, P., & Nilsson, B. (1969). On the Nuclear Structure and Stability of Heavy and Superheavy Elements. Nuclear Physics A, 131, 1-66.
https://doi.org/10.1016/0375-9474(69)90809-4
[113]
Nitske, W. R. (1971). The Life of Wilhelm Conrad Röntgen, Discoverer of the X-Ray. University of Arizona Press.
[114]
Nix, J. R. (1972). Calculation of Fission Barriers for Heavy and Superheavy Nuclei. Annual Review of Nuclear Science, 22, 65-120.
https://doi.org/10.1146/annurev.ns.22.120172.000433
[115]
Nix, J. R. (1989). Our 50-Year Odyssey with Fission. Nuclear Physics A, 502, 609c-629c.
https://doi.org/10.1016/0375-9474(89)90693-3
[116]
Noddack-Tacke, I. (1934). über das Element 93. Angewandte Chemie, 47, 653-655.
https://doi.org/10.1002/ange.19340473707
[117]
Novelline, R. A. (2019). Squire’s Fundamentals of Radiology (7th ed.). Harvard University Press.
[118]
Oganessian, Yu. Ts. et al. (2010). Synthesis of a New Element with Atomic Number Z = 117. Physical Review Letters, 104, Article ID: 142502.
[119]
Oganessian, Yu. Ts., & Utyonkov, V. K. (2015). Super-Heavy Element Research. Reports on Progress in Physics, 78, Article ID: 036301.
https://doi.org/10.1088/0034-4885/78/3/036301
[120]
Pashkevich, V. V. (1971). On the Asymmetric Deformation of Fissioning Nuclei. Nuclear Physics A, 169, 275-293. https://doi.org/10.1016/0375-9474(71)90884-0
[121]
Poenaru, D. N. (1977). Fission Isomers. Experimental Work. Annales de Physique (Paris), 2, 133-168. https://doi.org/10.1051/anphys/197702020133
[122]
Poenaru, D. N. (2001). Ternary and Multicluster Cold Fission. In D. N. Poenaru, H. Rebel, & J. Wentz (Eds.), Nuclei Far from Stability and Astrophysics. NATO Science Series (Vol. 17, pp. 151-162). Springer. https://doi.org/10.1007/978-94-010-0708-5_13
[123]
Poenaru, D. N. (Ed.) (1996). Nuclear Decay Modes. Institute of Physics Publishing.
[124]
Poenaru, D. N., & Gherghescu, R. A. (2014). Fission Decay of 282Cn Studied Using Cranking Inertia. Journal of Physics G: Nuclear and Particle Physics, 41, Article ID: 125104. https://doi.org/10.1088/0954-3899/41/12/125104
[125]
Poenaru, D. N., & Gherghescu, R. A. (2016a). Light Fragment Preformation in Cold Fission of 282Cn. European Physical Journal A, 52, Article No. 349.
https://doi.org/10.1140/epja/i2016-16349-9
[126]
Poenaru, D. N., & Gherghescu, R. A. (2016b). Spontaneous Fission of Superheavy Nucleus 286Fl. Physical Review, 94, Article ID: 014309.
https://doi.org/10.1103/PhysRevC.94.014309
[127]
Poenaru, D. N., & Gherghescu, R. A. (2017). Cluster Preformation at the Nuclear Surface in Cold Fission. Europhysics Letters, 118, Article ID: 22001.
https://doi.org/10.1209/0295-5075/118/22001
[128]
Poenaru, D. N., & Gherghescu, R. A. (2018a). Alpha Decay and Cluster Radioactivity of Super Heavy Nuclei 303,304120. Europhysics Letters, 124, Article ID: 52001.
https://doi.org/10.1209/0295-5075/124/52001
[129]
Poenaru, D. N., & Gherghescu, R. A. (2018b). Alpha Decay and Cluster Radioactivity of Nuclei of Interest to the Synthesis of Z = 119, 120 Isotopes. Physical Review C, 97, Article ID: 044621.
[130]
Poenaru, D. N., & Gherghescu, R. A. (2020). Cluster Radioactivity. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 8, 65-71.
https://doi.org/10.15415/jnp.2020.81008
[131]
Poenaru, D. N., & Gherghescu, R. A. (2021). Proton Radioactivity of Nuclei with Atomic Numbers Z = 51-91 and Mass Number 104-211. International Journal of Modern Physics E, 30, Article ID: 2150016. https://doi.org/10.1142/S0218301321500166
[132]
Poenaru, D. N., & Greiner, W. (1991a). Cluster Preformation as Barrier Penetrability. Physica Scripta, 44, 427-429. https://doi.org/10.1088/0031-8949/44/5/004
[133]
Poenaru, D. N., & Greiner, W. (1991b). Rare Decay Modes by Cluster Emission from Nuclei. Journal of Physics G: Nuclear and Particle Physics, 17, S443-S451.
https://doi.org/10.1088/0954-3899/17/S/045
[134]
Poenaru, D. N., & Greiner, W. (2010). Chapter 1. Cluster Radioactivity. In C. Beck (Ed.), Clusters in Nuclei Vol. 1. Lecture Notes in Physics 818 (pp. 1-56). Springer.
https://doi.org/10.1007/978-3-642-13899-7_1
[135]
Poenaru, D. N., & Greiner, W. (Eds.) (1996). Handbook of Nuclear Properties. Clarendon Press.
[136]
Poenaru, D. N., & Greiner, W. (Eds.) (1997). Experimental Techniques in Nuclear Physics. Walter de Gruyter. https://doi.org/10.1515/9783110809824
[137]
Poenaru, D. N., & Ivaşcu, M. (1981a). Alpha-Decay from Fission Isomeric States. Journal of Physics G: Nuclear Physics, 7, 965-971. https://doi.org/10.1088/0305-4616/7/7/019
[138]
Poenaru, D. N., & Ivaşcu, M. (1981b). Fission at Very Large Mass and Charge Density Asymmetries. In Proceedings of the International School Critical Phenomena in Heavy Ion Physics (pp. 743-793). Central Institute of Physics.
[139]
Poenaru, D. N., & Ivaşcu, M. (1983). Estimation of the Alpha-Decay Halflives. Journal de Physique (Paris), 44, 791-796. https://doi.org/10.1051/jphys:01983004407079100
[140]
Poenaru, D. N., & Ivaşcu, M. (1984). 5He Radioactivity. Journal de Physique (Paris), 45, 1099-1106. https://doi.org/10.1051/jphys:019840045070109900
[141]
Poenaru, D. N., & Ivaşcu, M. (Eds.) (1989). Particle Emission from Nuclei, Vol. III: Fission and Beta-Delayed Decay Modes. CRC Press.
[142]
Poenaru, D. N., & Plonski, I. H. (1996). Chapter 11. Macroscopic-Microscopic Method and Fission Isomers. In D. N. Poenaru (Ed.), Nuclear Decay Modes (pp. 433-486). Institute of Physics Publishing.
[143]
Poenaru, D. N., Dobrescu, B., Greiner, W., Hamilton, J. H., & Ramayya, A. V. (2000a). Nuclear Quasi-Molecular States in Ternary Fission. Journal of Physics G: Nuclear and Particle Physics, 26, L97-L102. https://doi.org/10.1088/0954-3899/26/6/104
[144]
Poenaru, D. N., Dobrescu, B., Greiner, W., Hamilton, J. H., & Ramayya, A. V. (2000b). The Quasi-Molecular Stage of Ternary Fission. In D. N. Poenaru, & S. Stoica (Eds.), Advances in Nuclear Physics (Proceedings of the International Symposium Celebrating 50 Years of Institutional Physics Research in Romania, Bucharest, 1999) (pp. 91-102). World Scientific Publishing. https://doi.org/10.1142/9789812793249
[145]
Poenaru, D. N., Gherghescu, R. A., & Greiner, W. (2005). Complex Fission Phenomena. Nuclear Physics A, 747, 182-205. https://doi.org/10.1016/j.nuclphysa.2004.09.104
[146]
Poenaru, D. N., Gherghescu, R. A., & Greiner, W. (2011a). Heavy-Particle Radioactivity of Superheavy Nuclei. Physical Review Letters, 107, Article ID: 062503.
https://doi.org/10.1103/PhysRevLett.107.062503
[147]
Poenaru, D. N., Gherghescu, R. A., & Greiner, W. (2011b). Single Universal Curve for Cluster Radioactivities and α Decay. Physical Review C, 83, Article ID: 014601.
https://doi.org/10.1103/PhysRevC.83.014601
[148]
Poenaru, D. N., Gherghescu, R. A., Greiner, W., Nagame, Y., Hamilton, J. H., & Ramayya, A. V. (2003). True Ternary Fission. Romanian Reports in Physics, 55, 781-786.
[149]
Poenaru, D. N., Greiner, W., & Gherghescu, R. A. (1998). Energy Released in Ternary Fission. Atomic Data and Nuclear Data Tables, 68, 91-147.
https://doi.org/10.1006/adnd.1997.0758
[150]
Poenaru, D. N., Greiner, W., Depta, K., Ivaşcu, M., Mazilu, D., & Săndulescu, A. (1985). Calculated Halflives and Kinetic Energies for Spontaneous Emission of Heavy Ions from Nuclei. Atomic Data and Nuclear Data Tables, 34, 423-538.
https://doi.org/10.1016/0092-640X(86)90013-6
[151]
Poenaru, D. N., Greiner, W., Hamilton, J. H., & Ramayya, A. V. (2001). Nuclear Molecules in Ternary Fission. Acta Physica Hungarica: Heavy Ion Physics, 14, 285-295.
https://doi.org/10.1556/APH.14.2001.1-4.27
[152]
Poenaru, D. N., Greiner, W., Hamilton, J. H., Ramayya, A. V., Hourany, E., & Gherghescu, R. A. (1999). Multicluster Accompanied Fission. Physical Review C, 59, 3457-3460.
https://doi.org/10.1103/PhysRevC.59.3457
[153]
Poenaru, D. N., Greiner, W., Ivaşcu, M., & Săndulescu, A. (1985). Heavy Cluster Decay of Trans-Zirconium Stable Nuclides. Physical Review C, 32, 2198-2200.
https://doi.org/10.1103/PhysRevC.32.2198
[154]
Poenaru, D. N., Ivaşcu, M., & Greiner, W. (1989). Chap. 7. Unified Approach of Alpha-Decay, Heavy Ion Emission and Cold Fission. In D. N. Poenaru, & M. Ivaşcu (Eds.), Particle Emission from Nuclei, Vol. III: Fission and Beta-Delayed Decay Modes (pp. 203-235). CRC Press. https://doi.org/10.1201/9781351075381-7
[155]
Poenaru, D. N., Ivaşcu, M., & Mazilu, D. (1979). Deformation Energies for Nuclei with Different Charge-To-Mass Ratio. Journal of Physics G: Nuclear Physics, 5, 1093-1106.
https://doi.org/10.1088/0305-4616/5/8/013
[156]
Poenaru, D. N., Ivaşcu, M., & Mazilu, D. (1980a). Folded Yukawa-plus-Exponential Model PES for Nuclei with Different Charge Densities. Computer Physics Communications, 19, 205-214. https://doi.org/10.1016/0010-4655(80)90051-X
[157]
Poenaru, D. N., Ivaşcu, M., & Mazilu, D. (1980b). A New Semiempirical Formula for the Alpha Decay Halflives. Journal de Physique Lettres, 41, L589-L590.
https://doi.org/10.1051/jphyslet:019800041024058900
[158]
Poenaru, D. N., Ivaşcu, M., & Mazilu, D. (1982). Alpha-Decay Halflife Semiempirical Relationships with Self-Improving Parameters. Computer Physics Communications, 25, 297-309. https://doi.org/10.1016/0010-4655(82)90025-X
[159]
Poenaru, D. N., Ivaşcu, M., & Mazilu, D. (1989). Chapter 2. Fission Isomers. In D. N. Poenaru, & M. Ivaşcu (Eds.), Particle Emission from Nuclei, Vol. III: Fission and Beta-Delayed Decay Modes (pp. 41-61). CRC Press.
https://doi.org/10.1201/9781351075381-2
[160]
Poenaru, D. N., Ivaşcu, M., & Săndulescu, A. (1979). Alpha-Decay as a Fission-Like Process. Journal of Physics G: Nuclear Physics, 5, L169-L173.
https://doi.org/10.1088/0305-4616/5/10/005
[161]
Poenaru, D. N., Ivaşcu, M., Săndulescu, A., & Greiner, W. (1984). Spontaneous Emission of Heavy Clusters. Journal of Physics G: Nuclear Physics, 10, L183-L189.
https://doi.org/10.1088/0305-4616/10/8/004
[162]
Poenaru, D. N., Ivaşcu, M., Săndulescu, A., & Greiner, W. (1985). Atomic Nuclei Decay Modes by Spontaneous Emission of Heavy Ions. Physical Review C, 32, 572-581.
https://doi.org/10.1103/PhysRevC.32.572
[163]
Poenaru, D. N., Plonski, I. H., & Greiner, W. (2006). α-Decay Half-Lives of Superheavy Nuclei. Physical Review C, 74, Article ID: 014312.
https://doi.org/10.1103/PhysRevC.74.014312
[164]
Poenaru, D. N., Schnabel, D., Greiner, W., Mazilu, D., & Gherghescu, R. A. (1991). Nuclear Lifetimes for Cluster Radioactivities. Atomic Data and Nuclear Data Tables, 48, 231-327. https://doi.org/10.1016/0092-640X(91)90008-R
[165]
Poenaru, D. N., Stöcker, H., & Gherghescu, R. A. (2018). Cluster and Alpha Decay of Superheavy Nuclei. European Physical Journal A, 54, Article No. 14.
https://doi.org/10.1140/epja/i2018-12469-6
[166]
Polikanov, S. M., & Sletten, G. (1970). Half-Life Systematics for Spontaneously Fissioning Isomers. Nuclear Physics A, 151, 656-672.
https://doi.org/10.1016/0375-9474(70)90403-3
[167]
Polikanov, S. M., Druin, V., Karnaukhov, V., Mikheev, V., Pleve, A., Skobelev, N., Subotin, V., Ter-Akopian, G., & Fomichev, V. (1962). Spontaneous Fission with an Anomalously Short Period. Soviet Physics. JETP, 15, 1016-1022.
[168]
Present, R. D. (1959). Possibility of Ternary Fission. Physical Review, 59, 466.
[169]
Price, P. B. (1989). Heavy-Particle Radioactivity. Annual Review of Nuclear and Particle Science, 39, 19-42. https://doi.org/10.1146/annurev.ns.39.120189.000315
[170]
Pyatkov, Yu. V. et al. (2010). Collinear Cluster Tri-Partition of 252Cf (sf) and in the 235U (nth, f) Reaction. European Physical Journal A, 45, 29-37.
https://doi.org/10.1140/epja/i2010-10988-8
[171]
Ramayya, A. V., Hamilton, J. H. et al. (1998). Observation of 10Be Emission in the Cold Ternary Spontaneous Fission of 252Cf. Physical Review Letters, 81, 947-950.
https://doi.org/10.1103/PhysRevLett.81.947
[172]
Randrup, J., Tsang, C. F., Möller, Nilsson, S. G., & Larsson, S. E. (1973). Theoretical Predictions of Fission Half-Lives of Elements with Z between 92 and 106. Nuclear Physics A, 217, 221-237. https://doi.org/10.1016/0375-9474(73)90192-9
[173]
Röntgen, W. (1895). Ueber eine neue Art von Strahlen. Vorläufige Mitteilung, Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft Würzburg.
[174]
Röntgen, W. (1896). Eine neue Art von Strahlen. Aus dem Bericht der 111. Sitzung vom 23. Januar 1896 (pp. 11-17). Springer.
[175]
Röntgen, W. (1897). Weitere Beobachtungen über die Eigenschaften der X-Strahlen. Aus den Sitzungsberichten der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1897 (pp. 392-406). Wiley.
[176]
Rose, H. J., & Jones, G. A. (1984). A New Kind of Natural Radioactivity. Nature, 307, 245-247. https://doi.org/10.1038/307245a0
[177]
Russo, P., Pedersen, J., & Vandenbosch, R. (1975). Gamma Decay of the 238U Shape Isomer. Nuclear Physics A, 240, 13-28. https://doi.org/10.1016/0375-9474(75)90434-0
[178]
Rutherford, E. (1910). Radium Standards and Nomenclature. Nature, 84, 430-431.
https://doi.org/10.1038/084430a0
[179]
Rutz, K., Bender, M., Bürvenich, T., Schilling, T., Reinhard, P. G., Maruhn, J. A., & Greiner, W. (1997). Superheavy Nuclei in Self-Consistent Nuclear Calculations. Physical Review C, 56, 238-243. https://doi.org/10.1103/PhysRevC.56.238
[180]
Sändulescu, A., Poenaru, D. N., & Greiner, W. (1980). New Type of Decay of Heavy Nuclei Intermediate between Fission and Alpha-Decay. Soviet Journal Particles and Nuclei, 11, 528-541.
[181]
Sändulescu, A., Poenaru, D. N., Greiner, W., & Hamilton, J. H. (1985). Comment on Exotic Nuclear Decay of 223Ra by Emission of 14C Nuclei. Physical Review Letters, 54, 490.
https://doi.org/10.1103/PhysRevLett.54.490
[182]
Santhosh, K. P., Biju, R. K., & Sahadevan, S. (2010). Semi-Empirical Formula for Spontaneous Fission Half Life Time. Nuclear Physics A, 832, 220-232.
https://doi.org/10.1016/j.nuclphysa.2009.10.160
[183]
Schirmer, J., Gerl, J., Habs, D., & Schwalm, D. (1989). γ Decay of the Superdeformed Shape Isomer in 236U. Physical Review Letters, 63, 2196-2199.
https://doi.org/10.1103/PhysRevLett.63.2196
[184]
Sierk, A. J. (1985). Mass Asymmetric Fission of Light Nuclei. Physical Review Letters, 55, 582-583. https://doi.org/10.1103/PhysRevLett.55.582
[185]
Singer, P., Mutterer, M., Kopach, Y. N., Klemens, M., Hotzel, A., Schwalm, D., Thirolf, P., & Hesse, M. (1997). High-Energy γ-Rays in α-Accompanied Spontaneous Fission of 252Cf. Zeitschrift für Physik, A, 359, 41-45. https://doi.org/10.1007/s002180050365
[186]
Smolanczuk, R. (1997). Properties of the Hypothetical Spherical Superheavy Nuclei. Physical Review C, 56, 812-824. https://doi.org/10.1103/PhysRevC.56.812
[187]
Smolanczuk, R., Skalski, J., & Sobiczewski, A. (1995). Spontaneous-Fission Half-Lives of Deformed Superheavy Nuclei. Physical Review C, 52, 1871-1880.
https://doi.org/10.1103/PhysRevC.52.1871
[188]
Sobiczewski, A., Gareev, F. A., & Kalinkin, B. N. (1966). Closed Shells for Z > 82 and N > 126 in a Diffuse Potential Well. Physics Letters B, 22, 500-502.
https://doi.org/10.1016/0031-9163(66)91243-1
[189]
Specht, H. J. (1974). Nuclear Fission. Review of Modern Physics, 46, 773-787.
https://doi.org/10.1103/RevModPhys.46.773
[190]
Specht, H. J., Weber, J., Konecny, E., & Heunemann, D. (1972). Identification of a Rotational Band in the 240Pu Fission Isomer. Physics Letters B, 41, 43-46.
https://doi.org/10.1016/0370-2693(72)90363-2
[191]
Staszczak, A., Baran, A., & Nazarewicz, W. (2013). Spontaneous Fission Modes and Lifetimes of Superheavy Elements in the Nuclear Density Functional Theory. Physical Review, 87, Article ID: 024320. https://doi.org/10.1103/PhysRevC.87.024320
[192]
Strutinsky, V. M. (1967). Shell Effects in Nuclear Masses and Deformation Energies. Nuclear Physics A, 95, 420-442. https://doi.org/10.1016/0375-9474(67)90510-6
[193]
Swiatecki, W. J. (1955). Systematics of Spontaneous Fission Half-Lives. Physical Review C, 100, 937-938. https://doi.org/10.1103/PhysRev.100.937
[194]
Takigawa, N., & Washiyama, K. (2017). Fundamentals of Nuclear Physics. Springer.
https://doi.org/10.1007/978-4-431-55378-6
[195]
The Associated Press (1995). Marie Curie Enshrined in Pantheon. The New York Times, 21 April 1995.
[196]
Thomas, R. G. (1954). A Formulation of the Theory of Alpha-Particle Decay from Time-Independent Equations. Progress of Theoretical Physics, 12, 253-264.
https://doi.org/10.1143/PTP.12.253
[197]
Tonozuka, I., & Arima, A. (1979). Surface α-Clustering and α-Decays of 212Po. Nuclear Physics A, 323, 45-60. https://doi.org/10.1016/0375-9474(79)90415-9
[198]
Tretyakova, S. P. (1992). Solid-State Nuclear Track Detectors and Their Use in Experimental Nuclear Physics. Soviet Journal of Particles and Nuclei, 23, 156-186.
[199]
Trevert, E. (2018). Something about X-Rays for Everybody. Sagwan Press.
[200]
Tsien, S.-T., Ho, Z.-W., Chastel, R., & Vigneron, L. (1947). Nouveaux modes de fission de l’uranium tripartition et quadripartition. Journal Physique Radium, 8, 165-178.
https://doi.org/10.1051/jphysrad:0194700806016500
[201]
Tsien, S.-T., Ho, Z.-W., Vigneron, L., & Chastel, R. (1946). Sur la tripartition de l’uranium provoquée par la capture d’un neutron. Comptes Rendue de l’Académie (Paris), 223, 986.
[202]
Tsien, S.-T., Ho, Z.-W., Vigneron, L., & Chastel, R. (1947a). Energies et fréquences des phénomènes de tripartition et quadripartition de l’uranium. Comptes Rendue de l’Académie (Paris), 224, 272-273.
[203]
Tsien, S.-T., Ho, Z.-W., Vigneron, L., & Chastel, R. (1947b). On the New Fission Processes of Uranium Nuclei. Physical Review, 71, 382-383.
https://doi.org/10.1103/PhysRev.71.382.2
[204]
Tsien, S.-T., Ho, Z.-W., Vigneron, L., & Chastel, R. (1947c). Ternary and Quaternary Fission of Uranium Nuclei. Nature, 159, 773-774. https://doi.org/10.1038/159773a0
[205]
Vandenbosch, R. (1974). Fission Isomer Systematics. In Proceedings of the International Symposium on the Physics and Chemistry of Fission (Vol. I, p. 251). IAEA.
[206]
Vanderbosch, R., & Huizenga, J. R. (1973). Nuclear Fission. Academic Press.
https://doi.org/10.1016/B978-0-12-710850-6.50017-4
[207]
Varga, K., Lovas, R. G., & Liotta, R. J. (1992). Absolute Alpha Decay Width of 212Po in a Combined Shell and Cluster Model. Physical Review Letters, 69, 37-40.
https://doi.org/10.1103/PhysRevLett.69.37
[208]
Viola Jr., V. E., & Seaborg, G. T. (1966). Nuclear Systematics of the Heavy Elements. II Lifetimes for Alpha, Beta and Spontaneous Fission Decay. Journal of Inorganic and Nuclear Chemistry, 28, 741-761. https://doi.org/10.1016/0022-1902(66)80412-8
[209]
Vilcov, I. A., Vilcov, N., Gangrsky, Y. P., Marinescu, M., Pleve, A. A., Poenaru, D. N., & Kharisov, I. F. (1972). Excitation Energy of Spontaneously Fissioning Isomers 240Pu, 241Cm, and 243Bk Produced by α-Induced Reactions. Soviet Journal of Nuclear Physics, 16, 253-256.
[210]
Wagemans, C. (1989). Chapter 3. Light Particle-Accompanied Fission. In D. N Poenaru, & M. Ivaşcu (Eds.), Particle Emission from Nuclei, Vol. III: Fission and Beta-Delayed Decay Modes (pp. 63-97). CRC Press. https://doi.org/10.1201/9781351075381-3
[211]
Wang, Y., Wang, S., Hou, Z., & Gu, J. (2015). Systematic Study of Alpha-Decay Energies and Half-Lives of Superheavy Nuclei. Physical Review C, 92, Article ID: 064301.
https://doi.org/10.1103/PhysRevC.92.064301
[212]
Warda, M., & Egido, J. L. (2012). Fission Half-Lives of Superheavy Nuclei in a Microscopic Approach. Physical Review, 86, Article ID: 014322.
https://doi.org/10.1103/PhysRevC.86.014322
[213]
Warda, M., Zdeb, A., & Robledo, L. M. (2018). Cluster Radioactivity in Super Heavy Nuclei. Physical Review C, 98, Article ID: 041602(R).
https://doi.org/10.1103/PhysRevC.98.041602
[214]
Wigner, E. P., & Eisenbud, L. (1947). Higher Angular Momenta and Long Range Interaction in Resonance Reactions. Physical Review, 72, 29-41.
https://doi.org/10.1103/PhysRev.72.29
[215]
Xu, C., Ren, Z., & Guo, Y. (2008). Competition between α Decay and Spontaneous Fission for Heavy and Superheavy Nuclei. Physical Review C, 78, Article ID: 044329.
https://doi.org/10.1103/PhysRevC.78.044329
[216]
Zeh, H. D. (1963). Contributions to the Theory of Alpha-Decay. Zeitschrift für Physik, 175, 490-505. https://doi.org/10.1007/BF01375342
[217]
Zeh, H. D., & Mang, H. J. (1962). Berechnung von α-Zerfallskonstanten in der Umgebung von 208Pb. Nuclear Physics, 29, 529-543. https://doi.org/10.1016/0029-5582(62)90207-9