全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Boron-Silicon Thin Film Formation Using a Slim Vertical Chemical Vapor Deposition Reactor

DOI: 10.4236/aces.2023.131002, PP. 7-18

Keywords: Chemical Vapor Deposition, Boron-Silicon Film, Boron Trichloride, Dichlorosilane

Full-Text   Cite this paper   Add to My Lib

Abstract:

A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900 in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations.

References

[1]  Chang, C.Y. and Sze, S.M. (1996) ULSI Technology. McGraw Hill, New York.
[2]  Shimura, F. (1989) Semiconductor Silicon Crystal Technology. Academic Press, San Diego.
[3]  Ruzyllo, J. (2020) Guide to Semiconductor Engineering. World Scientific, Singapore.
https://doi.org/10.1142/11706
[4]  Zhang, Y., Zhang, L. and Zhou, C. (2013) Review of Chemical Vapor Deposition of Graphene and Related Applications. Accounts of Chemical Research, 46, 2329-2339.
https://doi.org/10.1021/ar300203n
[5]  Nakamura, S. (1991) In Situ Monitoring of GaN Growth Using Interference Effects. Japanese Journal of Applied Physics, 30, 1620-1628.
https://doi.org/10.1143/JJAP.30.1620
[6]  Muroi, M., Yamada, A., Saito, A. and Habuka, H. (2020) Deposition and Etching Behaviour of Boron Trichloride Gas at Silicon Surface. Journal of Crystal Growth, 529, Article ID: 125301.
https://doi.org/10.1016/j.jcrysgro.2019.125301
[7]  Habuka, H., Aoyama, Y., Akiyama, S., Otsuka, T., Qu, W.F., Shimada, M. and Okuyama, K. (1999) Chemical Process of Silicon Epitaxial Growth in a SiHCl3-H2 System. Journal of Crystal Growth, 207, 77-86.
https://doi.org/10.1016/S0022-0248(99)00360-7
[8]  Kazuo Nakajima (2002) Epitakishaseichou no Mekanizumu. Kyoritsu, Tokyo.
[9]  Demin, V., Borisov, V., Grachev, G., Smirnov, A., Khomyakov, M. and Bagayev, S. (2021) Laser-Plasma Deposition of Silicon Carbonitride Films by the HMDS Vapor Gas Flow Activation after a Laser Beam Focus. Advances in Materials Physics and Chemistry, 11, 121-130.
https://doi.org/10.4236/ampc.2021.117012
[10]  Greenwood, N.N. and Earnshaw, A. (1997) Chemistry of the Elements. Butterworth-Heinemann, Oxford.
[11]  Muroi, M., Matsuo, M., Habuka, H., Ishida, Y., Ikeda, S. and Hara, S. (2018) Real Time Evaluation of Silicon Epitaxial Growth Process by Exhaust Gas Measurement Using Quartz Crystal Microbalance. Materials Science in Semiconductor Processing, 88, 192-197.
https://doi.org/10.1016/j.mssp.2018.08.014
[12]  Irikura, K., Muroi, M., Yamada, A., Matsuo, M., Habuka, H., Ishida, Y., Ikeda, S. and Hara, S. (2018) Advantages of a Slim Vertical Gas Channel at High SiHCl3 Concentrations for Atmospheric Pressure Silicon Epitaxial Growth. Materials Science in Semiconductor Processing, 87, 13-18.
https://doi.org/10.1016/j.mssp.2018.07.006
[13]  Khumpuang, S., Maekawa, S. and Hara, S. (2013) Photolithography for Minimal Fab System. IEEJ Transactions on Sensors and Micromachines, 133, 272-277.
https://doi.org/10.1541/ieejsmas.133.272
[14]  Khumpuang, S., Imura, F. and Hara, S. (2015) Analyses on Cleanroom-Free Performance and Transistor Manufacturing Cycle Time of Minimal Fab. IEEE Transactions on Semiconductor Manufacturing, 28, 551-556.
https://doi.org/10.1109/TSM.2015.2487324
[15]  Li, N., Habuka, H., Ikeda, S. and Hara, S. (2013) Silicon Chemical Vapor Deposition Process Using a Half-Inch Silicon Wafer for Minimal Manufacturing System. Physics Procedia, 46, 230-238.
https://doi.org/10.1016/j.phpro.2013.07.059
[16]  Li, N., Habuka, H., Ishida, Y., Ikeda, S. and Hara, S. (2016) Reflector Influence on Rapid Heating of Minimal Manufacturing Chemical Vapor Deposition Reactor. ECS Journal of Solid State Science and Technology, 5, 280-284.
https://doi.org/10.1149/2.0251605jss
[17]  Yamada, A., Li, N., Matsuo, M., Muroi, M., Habuka, H., Ishida, Y., Ikeda, S. and Hara, S. (2017) Transport Phenomena in a Slim Vertical Atmospheric Pressure Chemical Vapor Deposition Reactor Utilizing Natural Convection. Materials Science in Semiconductor Processing, 71, 348-351.
https://doi.org/10.1016/j.mssp.2017.08.024
[18]  Muroi, M., Otani, M. and Habuka, H. (2021) Boron-Silicon Film Chemical Vapor Deposition Using Boron Trichloride, Dichlorosilane and Monomethylsilane Gases. ECS Journal of Solid State Science and Technology, 10, Article ID: 064006.
https://doi.org/10.1149/2162-8777/ac08d6
[19]  Takahashi, T., Otani, M., Muroi M., Irikura, K., Matsuo, M., Yamada A., Habuka, H., Ishida, Y., Ikeda, S. and Hara, S. (2020) Quartz Crystal Microbalance for Real-Time Monitoring Chlorosilane Gas Transport in Slim Vertical Cold Wall Chemical Vapor Deposition Reactor. Materials Science in Semiconductor Processing, 106, Article ID: 104759.
https://doi.org/10.1016/j.mssp.2019.104759
[20]  Otani, M., Takahashi, T., Habuka, H., Ishida, Y., Ikeda, S. and Hara, S. (2020) Quartz Crystal Microbalances for Evaluating Gas Motion Differences between Dichlorosilane and Trichlorosilane in Ambient Hydrogen in a Slim Vertical Cold Wall Chemical Vapor Deposition Reactor. Advance in Chemical Engineering and Science, 10, 190-200.
https://doi.org/10.4236/aces.2020.103014
[21]  Habuka, H. and Matsui, M. (2013) Langasite Crystal Microbalance Frequency Behavior over Wide Gas Phase Conditions for Chemical Vapor Deposition. Surface and Coatings Technology, 230, 312-315.
https://doi.org/10.1016/j.surfcoat.2013.06.052
[22]  Habuka, H., Sakurai, A. and Saito, A. (2015) By-Product Formation in a Trichlorosilane-Hydrogen System for Silicon Film Deposition. ECS Journal of Solid State Science and Technology, 4, 16-19.
http://jss.ecsdl.org/cgi/content/abstract/4/3/P86
https://doi.org/10.1149/2.0031502jss

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133