全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Boundedness Types of Perturbations on the Growth of Semigroups

DOI: 10.4236/apm.2023.131001, PP. 1-10

Keywords: Cesáro Average, C0-Semigroups, Boundedness, Perturbation Stability, Hille-Yosida, Growth of Sequences

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study types of boundedness of a semigroup on a Banach space in terms of the Cesáro-average and the behavior of the resolvent at the origin and also exhibit a characterization of type Hille-Yosida for the generators of ϕj-bounded strongly continuous semigroups. Furthermore, these results are used to investigate the effect of the Perturbation on the type of the growth of sequences.

References

[1]  Shi, D.H. and Feng, D.X. (2000) Characteristic Conditions of the Generation of C0-Semigroups in a Hilbert Space. Journal of Mathematical Analysis and Applications, 247, 356-376.
https://doi.org/10.1006/jmaa.2000.6810
[2]  Eisner, T. (2005) Polynomially Bounded C0-Semigroups. Semigroup Forum, 70, 118-126.
https://doi.org/10.1007/s00233-004-0151-z
[3]  Batty, C., Haase, M. and Mubeen, J. (2013) The Holomorphic Functional Calculus Approach to Operator Semigroups. Acta Scientiarum Mathematicarum, 79, 289-323.
https://doi.org/10.1007/BF03651410
[4]  Zwart, H. (2003) Boundedness and Strong Stability of C0-Semigroups on a Banach Space. Ulm-Seminar, 8, 380-383.
[5]  Van Casteren, J.A. (1983) Operators Similar to Unitary or Selfadjoint Ones. Pacific Journal of Mathematics, 104, 241-255.
https://doi.org/10.2140/pjm.1983.104.241
[6]  Van Casteren, J.A. (1997) Boundedness Properties of Resolvents and Semigroups of Operators. Banach Center Publications, 38, 59-74.
https://doi.org/10.4064/-38-1-59-74
[7]  Guo, B.Z. and Zwart, H. (2006) On the Relation between Stability of Continuous and Discrete-Time Evolution Equations via the Cayley Transform. Integral Equations and Operator Theory, 54, 349-383.
https://doi.org/10.1007/s00020-003-1350-9
[8]  Boukdir, M. (2014) On the Growth of Semigroups and Perturbations. Semigroup Forum, 91, 338-346.
https://doi.org/10.1007/s00233-014-9655-3
[9]  Gomilko, A.M. (1999) Conditions on the Generator of a Uniformly Bounded C0-Semigroups. Functional Analysis and Its Applications, 33, 294-296.
https://doi.org/10.1007/BF02467113
[10]  Chill, R. and Tomilov, Y. (2003) Stability of C0-Semigroups and Geometry of Banach Spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 135, 493-511.
https://doi.org/10.1017/S0305004103006893
[11]  Krein, S.G. (1971) Linear Differential Equations in Banach Spaces. (Translations of Mathematical Monographs). American Mathematical Society, Washington DC.
[12]  Kaiser, C. and Weis, L. (2003) A Perturbation Theorem for Operator Semigroups in Hilbert Spaces. Semigroup Forum, 67, 63-75.
https://doi.org/10.1007/s002330010166
[13]  DeLaubenfels, R., Phóong, V.Q. and Wang, S. (2002) Laplace Transforms of Vector-Valued Functions with Growth ω and Semigroups of Operators. Semigroup Forum, 64, 355-375.
https://doi.org/10.1007/s002330010061
[14]  Eisner, T. and Zwart, A. (2007) Note on Polynomially Growing C0-Semigroups. Semigroup Forum, 75, 438-445.
https://doi.org/10.1007/s00233-007-0723-9
[15]  Eisner, T. (2010) Stability of Operators and Operator Semigroups. In: Ball, J.A., Böttcher, A., Dym, H., et al., Eds., Operator Theory: Advances and Applications, Birkhäuser Verlag, Basel.
https://doi.org/10.1007/978-3-0346-0195-5
[16]  Davies, E.B. (2005) Semigroup Growth Bounds. Journal of Operator Theory, 53, 225-249.
[17]  Batty, C.J.K. (2005) On a Perturbation Theorem of Kaiser and Weis. Semigroup Forum, 70, 471-474.
https://doi.org/10.1007/s00233-005-0504-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133