The aim of this article is to strengthen and improve the collaboration between professional agents of a service that manages one of the technical processes acting on a given territory by synchronizing the spatio-temporal dimensions including all agents assembled for the task. This proposal was tested in the Lamkansa neighborhood in Casablanca, Morocco. The employed approach is based GIS resources and on systemic analysis of communication present in a territory. We were inspired by several methodological developments that carried multi-actor processes in land use planning. We focused our work on strengthening the collaboration between professionals, field agents and office agents, in the process of design and monitoring the liquid sanitation system. The device is based on geolocation and synchronous feedback of topological, geographical, and multimedia data related to the liquid sanitation network. Thanks to a geo-collaborative, participative, and motivating logic, we reduced the management costs of the network and made it faster and more efficient by equally mobilizing another type of non-specialized actors (the inhabitants). This device uses spatial and temporal dimensions to consolidate collaborative work tools through ICT and GIS technologies that thematize and exchange information collected in the field. Furthermore, this device raises great interest as it entails the concept of integration of several actors in a geo-collaborative mode while combining geomatics with communication and information sciences.
References
[1]
Barbosa, A.E., Fernandes, J.N. and David, L.M. (2012) Key Issues for Sustainable Urban Stormwater Management. Water Research, 46, 6787-6798. https://doi.org/10.1016/j.watres.2012.05.029
[2]
Walsh, C.J., Fletcher, T.D. and Burns, M.J. (2012) Urban Stormwater Runoff: A New Class of Environmental Flow Problem. PLOS ONE, 7, e45814. https://doi.org/10.1371/journal.pone.0045814
[3]
Mondiale de la Santé, O. (2021) Situation de dans le monde l’assainissement: Un appel pressant à améliorer l’assainissement au profit de la santé, de l’environnement, de l’économie et de la société.
[4]
Top, G. (2005) Modèle d’information des réseaux d’assainissement intégrés dans leur environnement pour une gestion durable des infrastructures. Thèse, Université d’Artois.
[5]
Agence Européenne pour l’Environnement (AEE). https://www.eea.europa.eu/fr
[6]
Hijab, A., Henry, E. and Boulekbache, H. (2021) Multi-Actor Geo-Collaborative Device for Collecting Household Waste in Urban Areas: A Case Study of Lamkansa District, Casablanca, Morocco. Intelligent Information Management, 13, 269-285. https://doi.org/10.4236/iim.2021.136015
[7]
Hijab, A. (2021) Les TICs et SIG au service d’un dispositif collaboratif multi-acteuriel: Le cas d’un assainissement urbain durable. Doctoral dissertation, Valenciennes, Université Polytechnique Hauts-de-France.
[8]
Moine, A. (2006) Le territoire comme un système complexe: Un concept opératoire pour l’aménagement et la géographie. L’Espace Géographique, 35, 115-132. https://doi.org/10.3917/eg.352.0115
[9]
Hijab, A., Amrani, A. and Mazouz, H.B. (2017) évaluation Technico-Spatiale du réseau d’infrastructure d’assainissement par les SIG. GeoOttawa, 8 p.
[10]
Hvitved-Jacobsen, T., Raunkjær, K. and Nielsen, P.H. (1995) Volatile Fatty Acids and Sulfide in Pressure Mains. Water Science & Technology, 31, 169-179. https://doi.org/10.2166/wst.1995.0226
[11]
Warith, M.A., Kennedy, K. and Reitsma, R. (1998) Use of Sanitary Sewer as Wastewater Pre-Treatment Systems. Waste Management, 18, 235-247. https://doi.org/10.1016/S0956-053X(98)00023-3
[12]
Tanji, Y., Sakai, R., Miyanaga, K. and Unno, H. (2006) Estimation of Self-Purification Capacity of Biofilm Formed in Domestic Sewer Pipes. Biochemical Engineering Journal, 31, 96-101. https://doi.org/10.1016/j.bej.2006.05.021
[13]
Hijab, A., Boulekbache, H. and Henry, E. (2018) L’information géolocalisée au service de l’évaluation technico-spatiale du réseau d’assainissement des eaux pluviales et de la protection de l’environnement (Sud-ouest de Casablanca). Communication présentée à la 71e conférence canadienne de géotechnique et la 13e conférence conjointe SCG/AIH-SNC sur les eaux souterraines, GéoEdmonton.
[14]
Hijab, A. and Boulekbache, H. (2018) Design and Sustainable Management of Liquid Wastewater Treatment Network Using the GIS Tool and the Space-Based Database (Geo-LD). 40th IABSE Symposium Nantes 2018: Tomorrow’s Megastructures, Nantes, 9-21 September 2018, S24-1-S24-8. https://doi.org/10.2749/nantes.2018.s24-1
[15]
Afouda, A. (1980) Etude théorique de modèles de transformation pluie débit en milieu semi-urbain. Cah. O.R.S.T.O.M.Sér. Hydrol. XVII (2).
[16]
Bourrier, R. (1981) Les réseaux d’assainissement: Calculs, applications et perspectives. éditions Techniques et Documentation, Paris, 298 p.
[17]
Hijab, A., Boulekbache, H. and Henry, E. (2020) Surveillance collaborative de l’assainissement urbain pour une gestion durable. Communication, technologies et développement, 8. https://doi.org/10.4000/ctd.2796