全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Development of Dielectric Elastomer Transducers and Potential Applications

DOI: 10.4236/epe.2023.152005, PP. 105-126

Keywords: High-Efficiency Power Generation, Lightweight and High-Output Actuator, Sensor with Wide Measurement Range, Flexible, SWCNT Spray

Full-Text   Cite this paper   Add to My Lib

Abstract:

Power generation using dielectric elastomer transducers is cheap, light, stackable, easy to install, and highly efficient. Also, since the dielectric elastomer transducer is an actuator developed into an artificial muscle, if the DE motor is further developed, it might be possibly be able to drive a vehicle. Efficient robot driving, various industrial machines and the use of dielectric elastomer sensors to optimize the driving may also help solve the above problems from the perspective of eco-driving. This paper describes the latest level of development of dielectric elastomers, their main problems and solutions to these problems, and their potential applications. The possibilities and concrete plans for building local global smart cities (including local generation power for local consumption), efficient transportation, and environmental monitoring systems utilizing dielectric elastomers are also discussed.

References

[1]  Miyazaki, T. and Osawa, H. (2007) Search Report of Wave Power Devices. 2007 Spring Conference of the Japan Society of Naval Architects and Ocean Engineers, Tokyo, 18 April 2007, 43-46.
[2]  Disadvantages of Existing Renewable Energy Power Generation. (In Japanese)
https://renergy-online.com/sdgs-merit-demerit/
[3]  Chiba, S., Hasegawa, K., Waki, M., Fujita, K., Ohyama, K. and Zhu, S. (2017) Innovative Elastomer Transducer Driven by Karman Vortices in Water Flow. Journal of Materials Science and Engineering A, 7, 121-135.
https://doi.org/10.17265/2161-6213/2017.5-6.002
[4]  Chiba, S., Waki, M., Ono, K., Hatano, R., Taniyama, Y., Okada, E. and Ohyama, K. (2021) Challenge of Creating High Performance Dielectric Elastomers. In: Anderson, I.A., Shea, H.R. and Madden, J.D.W., Eds., Electroactive Polymer Actuators and Devices (EAPAD) XXIII, Vol. 11587, SPIE, Bellingham, 1157-1162.
https://doi.org/10.1117/12.2581255
[5]  Chiba, S., Waki, M., Takeshita, M. and Yoshizawa, T. (2021) Improvement Measures for Components of Dielectric Elastomers for Heavy Duty Uses Such as Robots and Power Assist Devices. Advances in Theoretical & Computational Physics, 4, 241-249.
https://doi.org/10.33140/ATCP.04.03.08
[6]  Pelrine, R. and Chiba, S. (1992) Review of Artificial Muscle Approaches. Proceedings of the 3rd International Symposium on Micromachine and Human Science (Invite), Nagoya, 15-18 May 1992, 1-9.
[7]  Katchalsky, A. (1949) Rapid Swelling and Deswelling of Reversible Gels of Polymeric Acid by Ionization. Experimentia, 5, 319-320.
https://doi.org/10.1007/BF02172636
[8]  Steinberg, I., Oplatka, A. and Katchalsky, A. (1966) Mechanochemical Engines. Nature, 210, 568-517.
https://www.nature.com/articles/210568a0
https://doi.org/10.1038/210568a0
[9]  Oguro, K., Fujiwara, N., Asaka, K., Onishi, K. and Sewa, S. (1999) Polymer Electrolyte Actuator with Gold Electrodes. In: Bar-Cohen, Y., Eds., Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, Vol. 3669, SPIE, Bellingham.
https://doi.org/10.1117/12.349702
[10]  Otero, T.F. and Sansiena, J.M. (1998) Soft and Wet Conducting Polymers for Artificial Muscles. Advanced Materials, 10, 491-494.
https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<491::AID-ADMA491>3.0.CO;2-Q
[11]  Osada, Y., Okuzaki, H. and Hori, H. (1992) A Polymer Gel with Electrically Driven Motility. Nature, 355, 242-244.
https://doi.org/10.1038/355242a0
[12]  Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S. and Kertesz, M. (1999) Carbon Nanotube Actuators. Science, 284, 1340-1344.
https://doi.org/10.1126/science.284.5418.1340
[13]  Gross, B. (1944) Experiments on Electrets. Physical Review, 66, 26-28.
https://doi.org/10.1103/PhysRev.66.26
[14]  Chou, C.-P. and Hannaford, B. (1994) Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, 8-13 May 1994, 281-286.
[15]  Smots, G. (1995) New Developments in Photochromic Polymers. Journal of Polymer Science: Polymer Chemistry Edition, 13, 2223-2231.
https://doi.org/10.1002/pol.1975.170131005
[16]  Tobushi, H., Hayashi, S. and Kojima, S. (1992) Mechanical Properties of Shape Memory Polymer of Polyurethane Series: Basic Characteristics of Stress-Strain-Temperature Relationship. JSME International Journal, Series 1, Solid Mechanics, Strength of Materials, 35, 296-302.
https://doi.org/10.1299/jsmea1988.35.3_296
[17]  Bar-Cohen, Y. (1995) Electroactive Olymer (EAP) Actuators as Artificial Muscles— Reality Potential and Challenges. 19th AIAA Applied Aerodynamics Conference, Anaheim, 11-14 June 2001.
[18]  Ratna, B., Thomsen, D. and Keller, P. (2001) Liquid Crystalline Elastomers as Artificial Muscles: Role of Side Chain-Backbone Coupling. SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, 4-8 March 2001.
https://doi.org/10.1117/12.432651
[19]  Yuan, X., Changgeng, S., Yan, G. and Zhenghong, Z. (2016) Application Review of Dielectric Electroactive Polymers (DEAPs) and Piezoelectric Materials for Vibration Energy Harvesting. Journal of Physics: Conference Series, 744, Article ID: 012077.
https://doi.org/10.1088/1742-6596/744/1/012077
[20]  Chiba, S., Waki, M., Kormbluh, R. and Pelrine, R. (2001) Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) 2008, Vol. 6927, SPIE, Bellingham.
https://doi.org/10.1117/12.778345
[21]  Lin, G., Chen, M. and Song, D. (2009) Research of Micro-Power Generator Based on the Dielectric Electro Active Polymer. 2009 International Conference on Energy and Environment Technology, Guilin, 16-18 October 2009, 782-786.
https://doi.org/10.1109/ICEET.2009.195
[22]  McKay, T., O’Brien, B., Calius, E. and Anderson, I. (2011) Soft Generators Using Dielectric Elastomers. Applied Physics Letters, 98, Article ID: 142903.
https://doi.org/10.1063/1.3572338
[23]  Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien1, B.M. and Calius, E.P. (2012) Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines. Journal of Applied Physics, 112, Article ID: 041101.
https://doi.org/10.1063/1.4740023
[24]  Van Kessel, R., Wattez, A. and Bauer, P. (2015) Analyses and Comparison of an Energy Harvesting System for Dielectric Elastomer Generators Using a Passive Harvesting Concept: The Voltage-Clamped Multi-Phase System. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) 2015, Vol. 9430, SPIE, Bellingham.
https://doi.org/10.1117/12.2084316
[25]  Chiba, S. and Waki, M. (2022) Possibility of a Portable Power Generator Using Dielectric Elastomers and a Charging System for Secondary Batteries. Energies, 15, Article No. 5854.
https://doi.org/10.3390/en15165854
[26]  Kovacs, G. and Düring, L. (2009) Contractive Tension Force Stack Actuator Based on Soft Dielectric EAP. In: Bar-Cohen, Y. and Wallmersperger, T., Eds., Electroactive Polymer Actuators and Devices (EAPAD) 2009, Vol. 72870, SPIE, Bellingham.
https://doi.org/10.1117/12.815195
[27]  Chiba, S. (2016) Dielectric Elastomer (DE) Actuators. In: Soft Actuator Materials, Compositions, and Applied Technologies, Chapter 2-2, S&T Press, Bakersfield, 93-101.
[28]  Chiba, S., Stanford, S., Pelrine, R., Kornbluh, R. and Prahlad, H. (2006) Electroactive Polymer Artificial Muscle. Journal of the Robotics Society of Japan, 24, 466-470. (In Japanese)
https://doi.org/10.7210/jrsj.24.466
[29]  Chiba, S. and Waki, M. (2009) Artificial Muscle Power Generation Utilizing Movement of Waves, Water Flow, and Human Beings. Petrotech, 32, 895-900.
[30]  Chiba, S., Waki, M., Wada, T., Hirakawa, Y., Masuda, K. and Ikoma, T. (2013) Consistent Ocean Wave Energy Harvesting Using Electroactive Polymer (Dielectric Elastomer) Artificial Muscle Generators. Applied Energy, 104, 497-502.
https://doi.org/10.1016/j.apenergy.2012.10.052
[31]  Chiba, S., Waki, M., Jiang, C., Takeshita, M., Uejima, M., Arakawa, K. and Ohyama, K. (2023) Dielectric Elastomer Transducer (High Efficiency Actuator and Power Generation System). In: EcoDesign for Sustainable Products, Services and Social Systems, Springer-Nature, Berlin.
[32]  Mad Catz Stereo Headset F.R.E.Q.4D Black with Bayer Vivi Touch Technology.
https://www.youtube.com/madcatzcompany
[33]  Cockcroft-Walton Circuit. (In Japanese)
https://www.cqpub.co.jp/term/cockcroftwaltoncircuit.htm
[34]  Waki, M. and Chiba, S. (2016) Application of Dielectric Elastomer (DE) Transducers. In: Soft Actuator Materials, Compositions, and Applied Technologies, Chapter 5-2, S&T Press, Bakersfield, 192-199.
[35]  Sakano, T., Song, Z., Ohyama, K., Zhu, S., Waki, M. and Chiba, S. (2019) Simulation of Self-Excited Power Generation System for Dielectric Elastomer Generation. Key Engineering Materials, 804, 41-45.
https://doi.org/10.4028/www.scientific.net/KEM.804.41
[36]  Chiba, S., M. Waki., Masda, K., Ikoma, T., Osawa, H. and Suwa, Y. (2011) Innovative Wave Power Generators Using Dielectric Elastomer Artificial Muscle. Proceedings of the 4th WHTC 2011, Glasgow, 14 September 2011.
[37]  Chiba. S., Kobayashi, M., Qu, T., Zhu, S., Waki, M., Takeshita, M. and Ohyama, K. (2022) Examination of Factors to Improve the Elongation and Output of Dielectric Elastomers. In: Anderson, I.A., Madden, J.D.W. and Shea, H.R., Eds., Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Vol. 12042, SPIE, Bellingham.
https://doi.org/10.1117/12.2603716
[38]  Chiba, S. and Maki, M. (2022) Dielectric Elastomer Sensor Capable of Measuring Large Deformation and Pressure. In: Vinjamuri, R., Ed., Human-Robot Interaction—Perspectives and Applications, IntechOpen, London.
http://dx.doi.org/10.5772/intechopen.108622.
[39]  Chiba, S., Waki, M., Takeshita, M., Uejima, M. and Arakawa, K. (2020) Dielectric Elastomer Using CNT as an Electrode. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) XXII, Vol. 11375, SPIE, Bellingham.
https://doi.org/10.1117/12.2548512
[40]  Shigenuma, H., Sugano, S., Nishitani, J., Yamaguchi, M., Hashimoto, S. and Maeda, S. (2018) Dielectric Elastomer Actuators with Carbon Nanotube Electrodes Painted with a Soft Brush. Actuators, 7, Article No. 51.
https://doi.org/10.3390/act7030051
[41]  Albuquerque, F. and Shea, H. (2020) Effect of Humidity, Temperature, and Elastomer Material on the Lifetime of Silicone-Based Dielectric Elastomer Actuators under a Constant DC Electric Field. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) XXII, Vol. 11375, SPIE, Bellingham.
https://doi.org/10.1117/12.2558428
[42]  Kornbluh, R., Pelrine, R., Prahlad, H., Wong-F, A., McCoy, B., Kim, K., Eckerle, J. and Low, T. (2012) From Boots to Buoys: Promises and Challenges of Dielectric Elastomer Energy Harvesting. In: Rasmussen, L., Ed., Electroactivity in Polymeric Materials, Springer, Boston, 67-93.
https://doi.org/10.1007/978-1-4614-0878-9_3
[43]  Kumamoto, K., Hayashi, T., Yonehara, Y., Okui, M. and Nakamura, T. (2020) Development of Development of a Locomotion Robot Using Deformable Dielectric Elastomer Actuator without Pre-Stretch. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) XXII, Vol. 11375, SPIE, Bellingham.
https://doi.org/10.1117/12.2558422
[44]  Chiba, S. (2010) Application Development of Artificial Muscle Actuators. Electronic Materials, 49, 34-41.
[45]  Youn, J.-H., Jeong, S.M., Hwang, G., kim, H., Hyeon, K., Park, J. and Kyung, K.-U. (2020) Dielectric Elastomer Actuator for Soft Robotics Applications and Challenges. Applied Sciences, 10, Article No. 640.
https://doi.org/10.3390/app10020640
[46]  Kunze, J., Prechtl, J., Bruch, D., Nalbach, S., Motzki, P., Mechatronik, Z. and Seelecke, S. (2020) Design and Fabrication of Silicone-Based Dielectric Elastomer Rolled Actuators for Soft Robotic, Applications. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) XXII, Vol. 11375, SPIE, Bellingham.
https://doi.org/10.1117/12.2558444
[47]  Xu, L. and Gu, G. (2017) Bioinspired Venus Flytrap: A Dielectric Elastomer Actuated Soft Gripper. 2017 24th International Conference on Mechatronics and Machine Vision in Practice, Auckland, 21-23 November 2017, 1-3.
https://doi.org/10.1109/M2VIP.2017.8211523
[48]  Guo, Y., Liu, L., Liu, Y. and Leng, J. (2021) Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 3, Article ID: 2000282.
https://doi.org/10.1002/aisy.202000282
[49]  Hasegawa, K., Chiba, S., Waki, M. and Wada, T. (2016) Electric Generators Using Dielectric Elastomers Driven by Karman Vortex in Water Flow. Journal of the Japan Institute of Energy, 95, 874-880.
https://doi.org/10.3775/jie.95.874
[50]  Chiba, S. and Waki, M. (2020) Innovative Power Generator Using Dielectric Elastomers (Creating the Foundations of an Environmentally Sustainable Society). Sustainable Chemistry and Pharmacy, 15, Article ID: 100205.
http://www.elservier.com/loate/scp
https://doi.org/10.1016/j.scp.2019.100205
[51]  Arena, F., Daniele, L., Fiamma, V., Fontana, M., Malara, G., Moretti, G., Romolo, A., Papini, G., Scialò, A. and Vertechy, R. (2018) Field Experiments on Dielectric Elastomer Generators Integrated on U-OWC Wave Energy Converter. 2018 37th International Conference on Ocean, Offshore & Arctic Engineers, 17-22 June 2018, Madrid.
https://doi.org/10.1115/OMAE2018-77830
[52]  Chiba, S., Kornbluh, R., Pelrine, R. and Waki, M. (2008) Low-Cost Hydrogen Production from Electroactive Polymer Artificial Muscle Wave Power Generators. Proceedings of 17th World Hydrogen Energy Conference 2008 (WHEC 2008), Brisbane, 15-19 June 2008.
[53]  Briggs, C., Kaiser, G., Sporidis, Y., Vicars, P., Rasmussen, L., Bowers, M., Dogrucu, A., Popovic, M. and Zhong, A. (2022) Sensitive and Robust Electroactive Polymer Tactile Pressure Sensors and Shape-Morphing Actuation for Robotic Grippers. In: Anderson, I.A., Madden, J.D.W. and Shea, H.R., Eds., Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Vol. 12042, SPIE, Bellingham.
https://doi.org/10.1117/12.2607779
[54]  Chiba, S., Waki, M. and Ohyama, K. (2021) High-Performance Moisture Sensors Applying Dielectric Elastomer. In: Anderson, I.A., Shea, H.R. and Madden, J.D.W., Eds., Electroactive Polymer Actuators and Devices (EAPAD) XXIII, Vol. 11587, SPIE, Bellingham.
https://doi.org/10.1117/12.2581335
[55]  Bose, H. and Liu, J. (2020) Smart Elastomer Based Liquid Level Sensors with Capacitive and Resistive Measurement Principles. In: Bar-Cohen, Y., Ed., Electroactive Polymer Actuators and Devices (EAPAD) XXII, Vol. 113751, SPIE, Bellingham.
https://doi.org/10.1117/12.2557854
[56]  Venkatraman, R., Kaaya, T., Tchipoque, H., Cluff, K., Asmatulu, R., Amick, R. and Chen, Z. (2022) Design, Fabrication, and Characterization of Dielectric Elastomer Actuator Enabled Cuff Compression Device. In: Anderson, I.A., Madden, J.D.W. and Shea, H.R., Eds., Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Vol. 12042, SPIE, Bellingham.
https://doi.org/10.1117/12.2613250
[57]  Zhang, C.L., Lao, Z.H., Li, M.Q. and Yurchenko, D. (2020) Wind Energy Harvesting from a Conventional Turbine Structure with an Embedded Vibro-Impact Dielectric Elastomer Generator. Journal of Sound and Vibration, 487, Article ID: 115616.
https://doi.org/10.1016/j.jsv.2020.115616
[58]  Mohammed-Ibrahim, J. and Moussab, H. (2020) Recent Advances on Hydrogen production through Seawater Electrolysis. Materials Science for Energy Technologies, 3, 780-807.
https://doi.org/10.1016/j.mset.2020.09.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133