全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性与啁啾对艾里脉冲传输性质影响的研究
Study on the Influence of Nonlinearity and Chirp on Propagation Properties of Airy Pulse

DOI: 10.12677/OE.2022.124016, PP. 139-146

Keywords: 超快光学,艾里脉冲,啁啾,非线性,色散
Ultrafast Optic
, Airy Pulse, Chirp, Nonlinearity, Dispersion

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文运用分步傅里叶法对初始啁啾与色散系数符号相同的情况进行数值模拟与分析,结果表明,啁啾的增大将进一步影响脉冲的展宽,影响脉冲传输质量。进一步研究了在自相位调制效应下,非线性系数对脉冲传输变化的影响,结果表明,在一定初始啁啾下,脉冲频谱主瓣强度有明显增大的趋势。
In this paper, the Fractional Fourier method is used to simulate and analyze the case where the initial chirp and the symbol of the dispersion coefficient are the same. The results show that the increase in chirp will further affect the pulse broadening and the pulse transmission quality. The effect of the nonlinear coefficient on pulse transmission is further studied under the self-phase modulation effect. The results show that the intensity of the main lobe of the pulse spectrum tends to increase obviously under a certain initial chirp.

References

[1]  Berry, M.V. and Balazs, N.L. (1979) Nonspreading Wave Packets. American Journal of Physics, 47, 264-267.
https://doi.org/10.1119/1.11855
[2]  Siviloglou, G.A. and Christodoulides, D.N. (2007) Accelerating Finite Energy Airy Beams. Optics Letters, 32, 979-981.
https://doi.org/10.1364/OL.32.000979
[3]  Polynkin, P., Kolesik, M., Moloney, J., Siviloglou, G.A. and Christodou-lides, D.N. (2010) Extreme Nonlinear Optics with Ultra-Intense Self-Bending Airy Beams. Optics and Photonics News, 21, 38-43.
https://doi.org/10.1364/OPN.21.9.000038
[4]  Hu, Y., Siviloglou, G.A., Zhang, P., Efremidis, N.K., Christodoulides, D.N. and Chen, Z. (2012) Self-Accelerating Airy Beams: Generation, Control, and Applications. In: Chen, Z. and Morandotti, R., Eds., Nonlinear Photonics and Novel Optical Phenomena. Springer Series in Optical Sciences, Vol. 170, Springer, New York, 1-46.
https://doi.org/10.1007/978-1-4614-3538-9_1
[5]  Bandres, C.M.A., Kaminer, I., Mills, M., Rodríguez-Lara, B., Greenfield, E., Segev, M. and Christodoulides, D.N. (2013) Accelerating Optical Beams. Optics and Photonics News, 24, 30-37.
https://doi.org/10.1364/OPN.24.6.000030
[6]  Shou, Q., Kuang, W., Liu, M., Zhou, Z., Chen, Z., Hu, W. and Guo, Q. (2022) Two Dimensional Large-Scale Optical Manipulation of Microparticles by Circular Airy Beams with Spherical and Oblique Wavefronts. Optics Communications, 525, Article ID: 128561.
https://doi.org/10.1016/j.optcom.2022.128561
[7]  Baumgartl, J., Mazilu, M. and Dholakia, K. (2008) Optically Mediated Partical Clearing Using Airy Wavepackets. Nature Photonics, 2, 675-678.
https://doi.org/10.1038/nphoton.2008.201
[8]  Zheng, Z., Zhang, B.-F., Chen, H., Ding, J. and Wang, H.-T. (2011) Optical Trapping with Focused Airy Beams. Applied Optics, 50, 43-49.
https://doi.org/10.1364/AO.50.000043
[9]  Zeng, Q., Liu, L. and Hu, S. (2020) Numerical Investigation on Characteristics of Filamentation by Intense Femtosecond Positive Temporal Airy Pulses. Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, Vol. 11455, 1213-1220.
[10]  Polynkin, P., Kolesik, M., Moloney, J.V., Siviloglou, G.A. and Christodoulides, D.N. (2009) Curved Plasma Channel Generation Using Ultraintense Airy Beams. Science, 324, 229-232.
https://doi.org/10.1126/science.1169544
[11]  Chen, W., Lian, C. and Luo, Y. (2021) Interaction of Airy Beams Modeled by the Fractional Nonlinear Cubic-Quintic Schr?dinger Equation. Physica Scripta, 96, Article ID: 125256.
https://doi.org/10.1088/1402-4896/ac36ec
[12]  Bloch, N.V., Lereah, Y., Lilach, Y., Gover, A. and Arie, A. (2013) Generation of Electron Airy Beams. Nature, 494, 331-335.
https://doi.org/10.1038/nature11840
[13]  Guo, Y., Huang, Y.R., Li, J., et al. (2021) Deep Penetration Microscopic Imaging with Non-Diffracting Airy Beams. Membranes, 11, Article 391.
https://doi.org/10.3390/membranes11060391
[14]  Kaminer, I., Lumer, Y., Segev, M. and Christodoulides, D.N. (2011) Causality Effects on Accelerating Light Pulses. Optics Express, 19, 23132-23139.
https://doi.org/10.1364/OE.19.023132
[15]  Heuteu, C., Souang, B.K., Mandeng, L.M. and Tchawoua, C. (2021) Supercontinuum Generation of Truncated Airy Pulses in a Cubic-Quintic AsSe2/As2S5 Optical Waveguide with Rib-Like Structure. Journal of Optics, 23, Article ID: 095503.
[16]  Chong, A., Renninger, W., Christodoulides, D. N. and Wise, F.W. (2022) Impact of Harmonic Potential Induced Nonlinearity on Airy Pulse Propagation. Journal of Optics, 24, Article ID: 065504.
https://doi.org/10.1088/2040-8986/ac6c92
[17]  Panagiotopoulos, P., Papazoglou, D.G., Couairon, A. and Tzortzakis, S. (2013) Sharply Autofocused Ring-Airy Beams Transforming into Non-Linear Intense Light Bullets. Nature Communications, 4, Article No. 2622.
https://doi.org/10.1038/ncomms3622
[18]  Thomas, B., Nicolas, M., Sciamanna, M. and Wolfersberger, D. (2022) Two Dimensional Airy Beam Soliton. Scientific Reports, 12, Article No. 9064.
https://doi.org/10.1038/s41598-022-12758-5
[19]  Xin, W., Wang, Y., Xin, Z. and Li, L. (2021) Inversion of Airy Pulses in Nonlinear Femtosecond Optical System. Optics Communications, 489, Article ID: 126889.
https://doi.org/10.1016/j.optcom.2021.126889
[20]  Zhang, L., Liu, K., Zhong, H., Zhang, J., Li, Y. and Fan, D. (2015) Effect of Initial Frequency Chirp on Airy Pulse Propagation in an Optical Fiber. Optics Express, 23, 2566-2576.
https://doi.org/10.1364/OE.23.002566
[21]  McMullen, J.D. (1977) Chirped-Pulse Compression in Strongly Dispersive Media. Journal of the Optical Society of America, 67, 1575-1578.
https://doi.org/10.1364/JOSA.67.001575

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133