全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rhodium Catalyzed [2π + 2π + 2π]-Cycloaddition of Alkynyl-Ynamides and Carbon Disulfide to Indolo-Thiopyrane Thiones

DOI: 10.4236/ijoc.2023.131003, PP. 16-39

Keywords: Cycloaddition, Heterocycles, Rhodium, Sulfur, Alkyne

Full-Text   Cite this paper   Add to My Lib

Abstract:

The synthesis of new indoloannulated thiopyranethiones is reported. The key-step is a rhodium-catalyzed [2 + 2 + 2]-cycloaddition of alkynyl-ynamides with carbon disulfide to close the pyrrole and the thiopyranethione rings simultaneously. A violet idolothiopyrane thione or a mixture of the violet and a red isomer result from [RhCl(C8H14)2]2/3BINAP catalyzed cycloadditions, the regiochemistry is controlled by the substitution pattern on the alkynyl-ynamide.

References

[1]  Love, B.E. (2006) Synthesis of Carbolines Possessing Antitumor Activity. Heterocyclic Antitumor Antibiotics, 2, 93-128.
https://doi.org/10.1007/7081_012
[2]  Moquin-Pattey, C. and Guyot, M. (1989) Grossularine-1 and Grossularine-2, Cytotoxic α-Carbolines from the Tunicate: Dendrodoa Grossularia. Tetrahedron, 45, 3445-3450.
https://doi.org/10.1016/S0040-4020(01)81023-1
[3]  Sharaf, M.H.M., Schiff, P.L., Tackie, A.N., Phoebe, C.H. and Johnson, R.L. (1996) The Isolation and Structure Determination of Cryptomisrine, a Novel Indolo[3,2-b]quinoline Dimeric Alkaloid from Cryptolepis sanguinolenta. Journal of Heterocyclic Chemistry, 33, 789-798.
https://doi.org/10.1002/jhet.5570330343
[4]  Subbaraju, G.V., Kavitha, J., Rajasekhar, D. and Jimenez, J.I. (2004) Jusbetonin, the First Indolo[3,2-b]quinoline Alkaloid Glycoside, from Justicia betonica. Journal of Natural Products, 67, 461-462.
https://doi.org/10.1021/np030392y
[5]  Cimanga, K.L.Y., DeBruyne, T., Apers, S., Cos, P., Bakana, P., Kambu, K., Tona, L., Pieters, L., vanden Berghe, D. and Vlietinck, A.J. (2000) Inhibitors of Xanthine Oxidase and Scavengers of Superoxide Anions from Cryptolepis sanguinolenta (Lindl.) Schlechter (Periplocaceae). Pharmaceutical and Pharmacological Communications, 6, 321-326.
https://doi.org/10.1211/146080800128736132
[6]  Cao, R., Peng, W., Wang, Z. and Xu, A. (2007) β-Carboline Alkaloids: Biochemical and Pharmacological Functions. Current Medicinal Chemistry, 14, 479-500.
https://doi.org/10.2174/092986707779940998
[7]  Kim, H., Sablin, O.S. and Ramsey, R.R. (1997) Inhibition of Monoamine Oxidase A by β-Carboline Derivatives. Archives of Biochemistry and Biophysics, 337, 137-142.
https://doi.org/10.1006/abbi.1996.9771
[8]  Funayama, Y., Nishio, K., Wakabayashi, K., Nagao, M., Shimoi, K., Ohira, T., Hasegawa, S. and Saijo, N. (1996) Effects of β- and γ-Carboline Derivatives on DNA Topoisomerase Activities. Mutation Research, 349, 183-191.
https://doi.org/10.1016/0027-5107(95)00176-X
[9]  Lippke, K.P., Schunack, W.G., Wenning, W. and Mueller, W.E. (1983) β-Carbolines as Benzodiazepine Receptor Ligands. 1. Synthesis and Benzodiazepine Receptor Interaction of Esters of. β-Carboline-3-Carboxylic Acid. Journal of Medicinal Chemistry, 26, 499-503.
https://doi.org/10.1021/jm00358a008
[10]  Hagen, T.J., Skolnick, P. and Cook, J.M. (1987) Synthesis of 6-Substituted β-Carbolines That Behave as Benzodiazepine Receptor Antagonists or Inverse Agonists. Journal of Medicinal Chemistry, 30, 750-753.
https://doi.org/10.1021/jm00387a033
[11]  Wang, Y.H., Tang, J.G., Wang, R.R., Yang, L.M., Dong, Z.J., Du, L. and Zheng, Y.T. (2007) Flazinamide, a Novel β-Carboline Compound with Anti-HIV Actions. Biochemical and Biophysical Research Communications, 355, 1091-1095.
https://doi.org/10.1016/j.bbrc.2007.02.081
[12]  Cera, G., Lanzi, M., Balestri, D., Ca’, N.D., Maggi, R., Bigi, F., Malacria, M. and Maestri, G. (2018) Synthesis of Carbolines via Palladium/Carboxylic Acid Joint Catalysis. Organic Letters, 20, 3220-3224.
https://doi.org/10.1021/acs.orglett.8b01072
[13]  Limbach, D., Geffe, M. and Detert, H. (2018) Synthesis of Carbolines via Microwave-Assisted Cadogan Reactions of Aryl-Nitropyridines. Chemistry Select, 3, 249-252.
https://doi.org/10.1002/slct.201702964
[14]  Laha, J.K., Barolo, S.M., Rossi, R.A. and Cuny, G.D. (2011) Synthesis of Carbolines by Photostimulated Cyclization of Anilinohalopyridines. Journal of Organic Chemistry, 76, 6421-6425.
https://doi.org/10.1021/jo200923n
[15]  Ding, S., Shi, Z. and Jiao, N. (2010) Pd(II)-Catalyzed Synthesis of Carbolines by Iminoannulation of Internal Alkynes via Direct C-H Bond Cleavage Using Dioxygen as Oxidant. Organic Letters, 12, 1540-1543.
https://doi.org/10.1021/ol100272s
[16]  Ustinov, A.K., Serkov, I.V., Proshin, A.N., Kovaleva, N.V., Boltneva, N.P., Makhaeva, G.F. and Bachurin, S.O. (2016) Synthesis of γ-Carbolines Containing NO-Donor Fragment and Assessment of Their Anticholinesterase Activity. Russian Chemical Bulletin, 65, 2718-2721.
https://doi.org/10.1007/s11172-016-1641-3
[17]  Letessier, J., Detert, H., Goetz, K. and Opatz, T. (2012) Microwave-Assisted Synthesis of 1,3-Disubstituted β-Carbolines from α-(Alkylideneamino) Nitriles and Gramine. Synthesis, 44, 747-754.
https://doi.org/10.1055/s-0031-1289675
[18]  Rocca, P., Marsais, F., Godard, A. and Quéguiner, G. (1993) A New Approach to the Synthesis of Lavendamycin Analogues. Tetrahedron Letters, 34, 2937-2940.
https://doi.org/10.1016/S0040-4039(00)60486-0
[19]  Peng, H., Chen, X., Chen, Y., He, Q., Xie, Y. and Yang, C. (2011) Solvent-Free Synthesis of δ-Carbolines/Carbazoles from 3-Nitro-2-Phenylpyridines/2-Nitrobiphenyl Derivatives Using DPPE as a Reducing Agent. Tetrahedron, 67, 5725-5731.
https://doi.org/10.1016/j.tet.2011.06.027
[20]  Letessier, J. and Detert, H. (2012) First Synthesis of Benzopyridoiodolium Salts and Twofold Buchwald-Hartwig Amination for the Total Synthesis of Quindoline. Synthesis, 44, 290-296.
https://doi.org/10.1055/s-0031-1289652
[21]  Catellani, M., Motti, E. and Della C.N. (2010) New Protocols for the Synthesis of Condensed Heterocyclic Rings through Palladium-Catalyzed Aryl Coupling Reactions. Topic in Catalysis, 53, 991-996.
https://doi.org/10.1007/s11244-010-9548-y
[22]  Iwaki, T., Yasuhara, A. and Sakamoto, T. (1999) Novel Synthetic Strategy of Carbolines via Palladium-Catalyzed Amination and Arylation Reaction. Journal of the Chemical Society, Perkin Transactions 1, No. 11, 1505-1510.
https://doi.org/10.1039/A901088B
[23]  Knölker, H.J. and Reddy, K.R. (2002) Isolation and Synthesis of Biologically Active Carbazole Alkaloids. Chemical Reviews, 102, 4303-4427.
https://doi.org/10.1021/cr020059j
[24]  Tremmel, T. and Bracher, F. (2015) New Approaches to the Synthesis of Canthin-4-One Alkaloids and Synthetic Analogues. Tetrahedron, 71, 4640-4646.
https://doi.org/10.1016/j.tet.2015.05.002
[25]  Riedmüller, S. and Nachtsheim, B.J. (2013) Palladium-Catalyzed Synthesis of N-Arylated Carbazoles Using Anilines and Cyclic Diaryliodonium Salts. Beilstein Journal of Organic Chemistry, 9, 1202-1209.
https://doi.org/10.3762/bjoc.9.136
[26]  Zhang, H. and Larock, R.C. (2002) Synthesis of β- and γ-Carbolines by the Palladium/Copper-Catalyzed Coupling and Copper-Catalyzed or Thermal Cyclization of Terminal Acetylenes. Tetrahedron Letters, 43, 1359-1362.
https://doi.org/10.1016/S0040-4039(02)00005-9
[27]  Berthelot, M. (1867) über die Polymeren des Acetylen. Journal für Praktische Chemie, 102, 432-435.
https://doi.org/10.1002/prac.18671020166
[28]  Reppe, W., Schlichting, O., Klager, K. and Toepel, T. (1948) Cyclisierende Polymerisation von Acetylen I über Cyclooctatetraen. Justus Liebigs Annalen der Chemie, 560, 1-92.
https://doi.org/10.1002/jlac.19485600102.
[29]  Reppe, W. and Schweckendiek, W. (1948) Cyclisierende Polymerisation von Acetylen II über die Kohlenwasserstoffe C10H10, C12H12 und Azulen. Justus Liebigs Annalen der Chemie, 560, 104-116.
https://doi.org/10.1002/jlac.19485600103
[30]  Jungk, P., Fischer, F. and Hapke, M. (2016) In Situ-Generated Chiral Co(I)-Catalyst for Asymmetric [2 + 2 + 2] Cycloadditions of Triynes. ACS Catalysis, 6, 3025-3029.
https://doi.org/10.1021/acscatal.6b00560
[31]  Jungk, P., Fischer, F., Thiel, I. and Hapke, M. (2015) CoCl (PPh3)3 as Cyclotrimerization Catalyst for Functionalized Triynes under Mild Conditions. Journal of Organic Chemistry, 80, 9781-9793.
[32]  Doerksen, R.S., Hodik, T., Hu, G., Huynh, N.O., Shuler, W.G. and Krische, M.J. (2021) Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chemical Reviews, 121, 4045-4083.
https://doi.org/10.1021/acs.chemrev.0c01133
[33]  Neumeier, M., Chakraborty, U., Schaarschmidt, D., de la Pena OShea, V., Perez-Ruiz, R. and von Wangelin, A.J. (2020) Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie International Edition, 59, 13473-13478.
https://doi.org/10.1002/anie.202000907
[34]  Alonso, J.M., Quiroga, S., Codony, S., Turcu, A.L., Barniol-Xicota, M., Perez, D., Guitian, E., Vazquez, S. and Pena, D. (2018) Palladium-Catalyzed Cocyclotrimerization of Arynes with a Pyramidalized Alkene. Chemical Communications, 54, 5996-5999.
https://doi.org/10.1039/C8CC03188F
[35]  Wood, J.M., da Silva Junior, E.N. and Bower, J.F. (2019) Rh-Catalyzed [2 + 2 + 2] Cycloadditions with Benzoquinones: De Novo Access to Naphthoquinones for Lignan and Type II Polyketide Synthesis. Organic Letters, 22, 265-269.
https://doi.org/10.1021/acs.orglett.9b04266
[36]  Link, A. and Sparr, C. (2018) Stereoselective Arene Formation. Chemical Society Reviews, 47, 3804-3815.
https://doi.org/10.1039/C7CS00875A
[37]  Tahara, Y.K., Matsubara, R. and Shibata, T. (2015) [2 + 2 + 2] Cycloaddition of Sulfanylbenzene-Tethered Diynes with Alkynes for the Synthesis of Multi-Substituted Dibenzothiophene Derivatives. Heterocycles, 90, 1094-1110.
https://doi.org/10.3987/COM-14-S(K)78
[38]  Aida, Y., Sugiyama, H., Uekusa, H., Shibata, Y. and Tanaka, K. (2016) Rhodium-Catalyzed Asymmetric [2 + 2 + 2] Cycloaddition of α,ω-Diynes with Unsymmetrical 1,2-Disubstituted Alkenes. Organic Letters, 18, 2672-2675.
https://doi.org/10.1021/acs.orglett.6b01116
[39]  Pla-Quintana, A. and Roglans, A. (2018) Chiral Induction in [2 + 2 + 2] Cycloaddition Reactions. Asian Journal of Organic Chemistry, 7, 1706-1718.
https://doi.org/10.1002/ajoc.201800291
[40]  Wakatsuki, Y. and Yamazaki, H. (1978) Cobalt Metallacycles. Part 5. Synthesis of Pyridines from Nitriles and Acetylenes via Cobaltacyclopentadienes. Journal of the Chemical Society, Dalton Transactions, No. 10, 1278-1282.
https://doi.org/10.1039/dt9780001278
[41]  Bönnemann, H. (1978) Cobalt-Catalyzed Pyridine Syntheses from Alkynes and Nitriles. Angewandte Chemie International Edition in English, 17, 505-515.
https://doi.org/10.1002/anie.197805051
[42]  Naiman, A. and Vollhardt, K.P.C. (1977) A Cobalt-Catalyzed One-Step Synthesis of Annelated Pyridines. Angewandte Chemie International Edition in English, 16, 708-709.
https://doi.org/10.1002/anie.197707081
[43]  Henry, G.D. (2004) De Novo Synthesis of Substituted Pyridines. Tetrahedron, 29, 6043-6061.
https://doi.org/10.1016/j.tet.2004.04.043
[44]  Kotha, S., Brahmachary, E. and Lahiri, K. (2005) Transition Metal Catalyzed [2 + 2 + 2] Cycloaddition and Application in Organic Synthesis. European Journal of Organic Chemistry, 22, 4741-4767.
https://doi.org/10.1002/ejoc.200500411
[45]  Vollhardt, K.P.C. (1984) Cobalt-Vermittelte [2 + 2 + 2] Cycloadditionen: Eine Ausgereifte Synthesestrategie. Angewandte Chemie, 96, 525-541.
https://doi.org/10.1002/ange.19840960804
[46]  Bönnemann, H. (1985) Organocobaltverbindungen in der Pyridinsynthese-Ein Beispiel für Struktur-Wirkungs-Beziehungen in der Homogenkatalyse. Angewandte Chemie, 97, 264-279.
https://doi.org/10.1002/ange.19850970406
[47]  Heller, B. and Hapke, M. (2007) The Fascinating Construction of Pyridine Ring Systems by Transition Metal-Catalysed [2 + 2 + 2] Cycloaddition Reactions. Chemical Society Reviews, 36, 1085-1094.
https://doi.org/10.1002/ange.19850970406
[48]  Lautens, M., Klute, W. and Tam, W. (1996) Transition Metal-Mediated Cycloaddition Reactions. Chemical Reviews, 96, 49-92.
https://doi.org/10.1021/cr950016l
[49]  Varela, J.A. and Saá, C. (2003) Construction of Pyridine Rings by Metal-Mediated [2 + 2 + 2] Cycloaddition. Chemical Reviews, 103, 3787-3801.
https://doi.org/10.1021/cr030677f
[50]  Nakamura, I. and Yamamoto, Y. (2004) Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. Chemical Reviews, 104, 2127-2198.
https://doi.org/10.1021/cr020095i
[51]  Gutnov, A., Abaev, V., Redkin, D., Fischer, C., Bonrath, W. and Heller, B. (2005) An Improved Synthesis of Pyridoxine via [2 + 2 + 2] Cyclization of Acetylenes and Nitriles. Synlett, 2005, 1188-1190.
https://doi.org/10.1055/s-2005-864834
[52]  Kase, K., Goswami, A., Ohtaki, K., Tanabe, E., Saino, N. and Okamoto, S. (2007) On-Demand Generation of an Efficient Catalyst for Pyridine Formation from Unactivated Nitriles and α,ω-Diynes Using CoCl2-6H2O, Dppe, and Zn. Organic Letters, 9, 931-934.
https://doi.org/10.1021/ol070037p
[53]  Yamamoto, Y., Ogawa, R. and Itoh, K. (2001) Significant Chemo- and Regioselectivies in the Ru(II)-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Dicyanides. Journal of the American Chemical Society, 123, 6189-6190.
https://doi.org/10.1021/ja003890r
[54]  Yamamoto, Y., Okuda, S. and Itoh, K. (2001) Ruthenium (II)-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Electron-Deficient Nitriles. Chemical Communications, No. 12, 1102-1103.
https://doi.org/10.1039/b102588k
[55]  Tran, C., Haddad, M. and Ratovelomanana-Vidal, V. (2019) Ruthenium-Catalyzed, Microwave-Mediated [2 + 2 + 2] Cycloaddition: A Useful Combination for the Synthesis of 2-Aminopyridines. Synlett, 30, 1891-1894.
https://doi.org/10.1055/s-0037-1611920
[56]  Yamamoto, Y., Kinpara, K., Nishiyama, H. and Itoh, K. (2005). Synthesis of 2-Haloalkylpyridines via Cp*RuCl-Catalyzed Cycloaddition of 1,6-Diynes with α-Halonitriles. Unusual Halide Effect in Catalytic Cyclocotrimerization. Advanced Synthesis and Catalysis, 347, 1913-1916.
https://doi.org/10.1002/adsc.200505193
[57]  Yamamoto, Y., Kinpara, K., Ogawa, R., Nishiyama, H. and Itoh, K. (2006) Ruthenium-Catalyzed Cycloaddition of 1,6-Diynes and Nitriles under Mild Conditions: Role of the Coordinating Group of Nitriles. Chemistry—A European Journal, 12, 5618-5631.
https://doi.org/10.1002/chem.200600176
[58]  Tanaka, K., Suzuki, N. and Nishida, G. (2006) Cationic Rhodium(I)/Modified-BINAP Catalyzed [2 + 2 + 2] Cycloaddition of Alkynes with Nitriles. European Journal of Organic Chemistry, 2006, 3917-3922.
https://doi.org/10.1002/ejoc.200600347
[59]  Komine, Y., Kamisawa, A. and Tanaka, K. (2009) Flexible Synthesis of Fused Benzofuran Derivatives by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition with Phenol-Linked 1,6-Diynes. Organic Letters, 11, 2361-2364.
https://doi.org/10.1021/ol900802d
[60]  Boñaga, L.V.R., Zhang, H.C., Moretto, A.F., Ye, H., Gautier, D.A., Li, J., Leo, G.C. and Maryanoff, B.E. (2005) Synthesis of Macrocycles via Cobalt-Mediated [2 + 2 + 2] Cycloadditions. Journal of the American Chemical Society, 127, 3473-3485.
https://doi.org/10.1021/ja045001w
[61]  Wen, H., Cao, W., Liu, Y., Wang, L., Chen, P. and Tang, Y. (2018) Metal-Free [2 + 2 + 2] Cycloaddition of Ynamide-Nitriles with Ynamides: A Highly Regio- and Chemoselective Synthesis of δ-Carboline Derivatives. Journal of Organic Chemistry, 83, 13308-13324.
https://doi.org/10.1021/acs.joc.8b02112
[62]  Brien, D.J., Naiman, A. and Vollhardt, K.P.C. (1982) Catalytic Co-Cyclisation of α,ω-Cyanoalkynes with Alkynes: A Versatile Chemo- and Regio-Selective Synthesis of 2,3-Substituted 5,6,7,8-Tetrahydroquinolines and Other Cycloalka[1,2-b]pyridines. Journal of the Chemical Society, Chemical Communications, No. 2, 133-134.
[63]  Varela, J.A., Castedo, L. and Saá, C. (1998) One-Step Synthesis of Symmetrical 3,3'-Substituted 2,2'-Bipyridine Ligands by Cobalt(I)-Catalyzed [2 + 2 + 2] Cycloadditions. Journal of the American Chemical Society, 120, 12147-12148.
https://doi.org/10.1021/ja982832r
[64]  Garcia, L., Pla-Quintana, A., Roglans, A. and Parella, T. (2010) Microwave-Enhanced Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition Reactions to Afford Highly Functionalized Pyridines and Bipyridines. European Journal of Organic Chemistry, 2010, 3407-3415.
https://doi.org/10.1002/ejoc.200901318
[65]  Garcia, P., Moulin, S., Miclo, Y., Leboeuf, D., Gandon, V., Aubert, C. and Malacria, M. (2009) Synthesis of Tricyclic Fused 3-Aminopyridines through Intramolecular Co-I-Catalyzed [2 + 2 + 2] Cycloaddition between Ynamides, Nitriles, and Alkynes. Chemistry—A European Journal, 15, 2129-2139.
https://doi.org/10.1002/chem.200802301
[66]  You, X., Xie, X., Wang, G., Xiong, M., Sun, R., Chen, H. and Liu, Y. (2016) Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of Alkyne-Nitriles with Alkynes Assisted by Lewis Acids: Efficient Synthesis of Fused Pyridines. Chemistry—A European Journal, 22, 16765-16769.
https://doi.org/10.1002/chem.201603829
[67]  Wang, G., You, X., Gan, Y. and Liu, Y. (2017) Synthesis of δ-and α-Carbolines via Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of Functionalized Alkyne-Nitriles with Alkynes. Organic Letters, 19, 110-113.
https://doi.org/10.1021/acs.orglett.6b03385
[68]  Brenna, D., Villa, M., Gieshoff, T.N., Fischer, F., Hapke, M. and von Wangelin, A.J. (2017) Iron-Catalyzed Cyclotrimerization of Terminal Alkynes by Dual Catalyst Activation in the Absence of Reductants. Angewandte Chemie International Edition, 56, 8451-8454.
https://doi.org/10.1002/anie.201705087
[69]  Richard, V., Ipouck, M., Mérel, D.S., Gaillard, S., Whitby, R.J., Witulski, B. and Renaud, J.L. (2014) Iron(II)-Catalysed [2 + 2 + 2] Cycloaddition for Pyridine Ring Construction. Chemical Communications, 50, 593-595.
https://doi.org/10.1039/C3CC47700B
[70]  Broere, D.L. and Ruijter, E. (2012) Recent Advances in Transition-Metal-Catalyzed [2 + 2 + 2]-Cyclo(Co)Trimerization Reactions. Synthesis, 44, 2639-2672.
https://doi.org/10.1055/s-0032-1316757
[71]  Amatore, M. and Aubert, C. (2015) Recent Advances in Stereoselective [2 + 2 + 2] Cycloadditions. European Journal of Organic Chemistry, 2015, 265-286.
https://doi.org/10.1002/ejoc.201403012
[72]  Yamamoto, K., Nagae, H., Tsurugi, H. and Mashima, K. (2016) Mechanistic Understanding of Alkyne Cyclotrimerization on Mononuclear and Dinuclear Scaffolds: [4 + 2] Cycloaddition of the Third Alkyne onto Metallacyclopentadienes and Dimetallacyclopentadienes. Dalton Transactions, 45, 17072-17081.
https://doi.org/10.1039/C6DT03389J
[73]  Bauer, I. and Knölker, H.J. (2015) Iron Catalysis in Organic Synthesis. Chemical Reviews, 115, 3170-3387.
https://doi.org/10.1039/C6DT03389J
[74]  Kiel, G.R., Samkian, A.E., Nicolay, A., Witzke, R.J. and Tilley, T.D. (2018) Titanocene-Mediated Dinitrile Coupling: A Divergent Route to Nitrogen-Containing Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 140, 2450-2454.
https://doi.org/10.1039/C6DT03389J
[75]  Onodera, G., Shimizu, Y., Kimura, J.N., Kobayashi, J., Ebihara, Y., Kondo, K. and Takeuchi, R. (2012) Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of α,ω-Diynes with Nitriles. Journal of the American Chemical Society, 134, 10515-10531.
https://doi.org/10.1021/ja3028394
[76]  Zhang, J., Guo, M., Chen, Y., Zhang, S., Wang, X.N. and Chang, J. (2019) Synthesis of Amino-Substituted α-and δ-Carbolines via Metal-Free [2 + 2 + 2] Cycloaddition of Functionalized Alkyne-Nitriles with Ynamides. Organic Letters, 21, 1331-1336.
https://doi.org/10.1021/acs.orglett.9b00021
[77]  Letessier, J., Geffe, M., Schollmeyer, D. and Detert, H. (2013) Synthesis of a Naphtho-Pyrido-Annulated Iodonium Salt and Pd-Catalyzed Transformation to 7H-Naphtho[1,8-bc][1,5]naphthyridine. Synthesis, 45, 3173-3178.
https://doi.org/10.1055/s-0033-1338530
[78]  Glang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. and Detert, H. (2014) Arylethynyl-Substituted Tristriazolotriazines: Synthesis, Optical Properties, and Thermotropic Behavior. European Journal of Organic Chemistry, 2014, 3116-3126.
https://doi.org/10.1002/ejoc.201400088
[79]  Rieth, T., Röder, N., Lehmann, M. and Detert, H. (2018) Isomerisation of Liquid-Crystalline Tristriazolotriazines. Chemistry—A European Journal, 24, 93-96.
https://doi.org/10.1002/chem.201705095
[80]  Witulski, B. and Grand, J. (2013) Application To The Synthesis Of Natural Products. In: Tanaka, K., Ed., Transition-Metal-Mediated Aromatic Ring Construction, Wiley, New York, 1-35.
https://doi.org/10.1002/9781118629871
[81]  Karad, S.N. and Liu, R.S. (2014) Regiocontrolled Gold-Catalyzed [2 + 2 + 2] Cycloadditions of Ynamides with Two Discrete Nitriles to Construct 4-Aminopyrimidine Cores. Angewandte Chemie International Edition, 53, 9072-9076.
https://doi.org/10.1002/anie.201405312
[82]  Wang, Y., Song, L.J., Zhang, X. and Sun, J. (2016) Metal-Free [2 + 2 + 2] Cycloaddition of Ynamides and Nitriles: Mild and Regioselective Synthesis of Fully Substituted Pyridines. Angewandte Chemie International Edition, 55, 9704-9708.
https://doi.org/10.1002/anie.201603889
[83]  Fischer, F. and Hapke, M. (2018) Air-Stable CpCoI-Phosphite-Fumarate Precatalyst in Cyclization Reactions: Comparing Different Methods of Energy Supply. European Journal of Organic Chemistry, 2018, 3193-3201.
https://doi.org/10.1002/ejoc.201800196
[84]  Witulski, B. and Alayrac, C. (2002) A Highly Efficient and Flexible Synthesis of Substituted Carbazoles by Rhodium-Catalyzed Inter- and Intramolecular Alkyne Cyclotrimerizations. Angewandte Chemie International Edition, 41, 3281-3284.
https://doi.org/10.1002/1521-3773(20020902)41:17%3C3281::AID-ANIE3281%3E3.0.CO;2-G
[85]  Klein, M. and König, B. (2004) Synthesis and Thermal Cyclization of an Enediyne-Sulfonamide. Tetrahedron, 60, 1087-1092.
https://doi.org/10.1016/j.tet.2003.11.078
[86]  Alayrac, C. and Witulski, B. (2021) Rhodium-Catalyzed Crossed [2 + 2 + 2] Cycloaddition with Ynamides: Key-Strategy for the Concise Total Synthesis of 3-Oxygenated Carbazole Alkaloids. Heterocycles, 103, 205-217.
https://doi.org/10.3987/COM-20-S(K)24
[87]  Nissen, F. and Detert, H. (2011) Total Synthesis of Lavendamycin by a [2 + 2 + 2] Cycloaddition. European Journal of Organic Chemistry, 2011, 2845-2853.
https://doi.org/10.1002/ejoc.201100131
[88]  Dassonneville, B., Witulski, B. and Detert, H. (2011) [2 + 2 + 2] Cycloadditions of Alkynylynamides—A Total Synthesis of Perlolyrine and the First Total Synthesis of “Isoperlolyrine”. European Journal of Organic Chemistry, 2011, 2836-2844.
https://doi.org/10.1002/ejoc.201100121
[89]  Nissen, F., Richard, V., Alayrac, C. and Witulski, B. (2011) Synthesis of β- and γ-Carbolines via Ruthenium and Rhodium Catalyzed [2 + 2 + 2] Cycloadditions of Yne-Ynamides with Methylcyanoformate. Chemical Communications, 47, 6656-6658.
https://doi.org/10.1039/c1cc11298h
[90]  Ye, F., Boukattaya, F., Haddad, M., Ratovelomanana-Vidal, V. and Michelet, V. (2018) Synthesis of 2-Aminopyridines via Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6- and 1,7-Diynes with Cyanamides: Scope and Limitations. New Journal of Chemistry, 42, 3222-3235.
https://doi.org/10.1039/C7NJ04933A
[91]  Kashima, K., Ishii, M. and Tanaka, K. (2015) Synthesis of Pyridylphosphonates by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6- and 1,7-Diynes with Diethyl Phosphorocyanidate. European Journal of Organic Chemistry, 2015, 1092-1099.
https://doi.org/10.1002/ejoc.201403452
[92]  Nakajima, K., Liang, W. and Nishibayashi, Y. (2016) Iron-Catalyzed [2 + 2 + 2] Cycloaddition Reactions of Diynes with Oxyphosphaethynes to Construct 2-Phosphaphenol Derivatives. Organic Letters, 18, 5006-5009.
https://doi.org/10.1021/acs.orglett.6b02462
[93]  Spahn, N.A., Nguyen, M.H., Renner, J., Lane, T.K. and Louie, J. (2017) Regioselective Iron-Catalyzed [2 + 2 + 2] Cycloaddition Reaction forming 4,6-Disubstituted 2-Aminopyridines from Terminal Alkynes and Cyanamides. Journal of Organic Chemistry, 82, 234-242.
https://doi.org/10.1021/acs.joc.6b02374
[94]  Chowdhury, H. and Goswami, A. (2017) Synthesis of 3-(2-Thiopyridyl) Indoles via the Ruthenium Catalyzed [2 + 2 + 2] Cycloaddition of Diynes and 3-Thiocyanatoindoles. Organic and Biomolecular Chemistry, 15, 5824-5830.
https://doi.org/10.1039/C7OB01101F
[95]  Kalaramna, P., Bhatt, D., Sharma, H. and Goswami, A. (2019) An Atom-Economical Approach to 2-Aryloxypyridines and 2,2'/2,3'-Diaryloxybipyridines via Ruthenium-Catalyzed [2 + 2 + 2] Cycloadditions. Advanced Synthesis and Catalysis, 361, 4379-4385.
https://doi.org/10.1002/adsc.201900553
[96]  Tran, C., Haddad, M. and Ratovelomanana-Vidal, V. (2019) Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition of α,ω-Diynes and Selenocyanates: An Entry to Selenopyridine Derivatives. Synthesis, 51, 2532-2541.
https://doi.org/10.1055/s-0037-1610704
[97]  Kalaramna, P., Bhatt, D., Sharma, H. and Goswami, A. (2019) An Expeditious and Environmentally-Benign Approach to 2-Aryl/Heteroaryl Selenopyridines via Ruthenium Catalyzed [2 + 2 + 2] Cycloadditions. European Journal of Organic Chemistry, 2019, 4694-4700.
https://doi.org/10.1002/ejoc.201900664
[98]  Sasaki, M., Hamzik, P.J., Ikemoto, H., Bartko, S.G. and Danheiser, R.L. (2018) Formal Bimolecular [2 + 2 + 2] Cycloaddition Strategy for the .Synthesis of Pyridines: Intramolecular Propargylic Ene Reaction/Aza Diels-Alder Reaction Cascades. Organic Letters, 20, 6244-6249.
https://doi.org/10.1021/acs.orglett.8b02728
[99]  Kashima, K., Teraoka, K., Uekusa, H., Shibata, Y. and Tanaka, K. (2016) Rhodium-Catalyzed Atroposelective [2 + 2 + 2] Cycloaddition of Ortho-Substituted Phenyl Diynes with Nitriles: Effect of Ortho Substituents on Regio- and Enantioselectivity. European Journal of Organic Chemistry, 47, 1092-1099.
https://doi.org/10.1002/chin.201638163
[100]  Ye, F., Tran, C., Jullien, L., Le Saux, T., Haddad, M., Michelet, V. and Ratovelomanana-Vidal, V. (2018) Synthesis of Fluorescent Azafluorenones and Derivatives via a Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition. Organic Letters, 20, 4950-4953.
https://doi.org/10.1021/acs.orglett.8b02085
[101]  Arai, S., Izaki, A., Amako, Y., Nakajima, M., Uchiyama, M. and Nishida, A. (2019) Regioselective [2 + 2 + 2] Cycloaddition Reaction Using Allene-Ynes with Simple Allenes under Nickel Catalysis. Advanced Synthesis and Catalysis, 361, 4882-4887.
https://doi.org/10.1002/adsc.201900719
[102]  Hadlington, T.J., Szilvási, T. and Driess, M. (2018) Metal Nitrene-Like Reactivity of a Si=N Bond towards CO2. Chemical Communications, 54, 9352-9355.
https://doi.org/10.1039/C8CC05238G
[103]  Wakatsuki, Y. and Yamazaki, H. (1973) Novel Synthesis of Heterocyclic Compounds from Acetylenes. Chemical Communications, No. 8, 280a.
https://doi.org/10.1039/c3973000280a
[104]  Yamamoto, Y., Takagishi, H. and Itoh, K. (2002) Ruthenium-Catalyzed Cycloaddition of 1, 6-Diynes with Isothiocyanates and Carbon Disulfide: First Transition-Metal Catalyzed [2 + 2 + 2] Cocyclotrimerization Involving CS Double Bond. Journal of the American Chemical Society, 124, 28-29.
https://doi.org/10.1021/ja016510q
[105]  Yamamoto, Y., Kinpara, K., Saigoku, T., Takagishi, H., Okuda, S., Nishiyama, H. and Itoh, K. (2005) Cp*RuCl-Catalyzed [2 + 2 + 2] Cycloadditions of α,ω-Diynes with Electron-Deficient Carbon-Heteroatom Multiple Bonds Leading to Heterocycles. Journal of the American Chemical Society, 127, 605-613.
https://doi.org/10.1021/ja045694g
[106]  Tanaka, K., Wada, A. and Noguchi, K. (2006) Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Isothiocyanates and Carbon Disulfide. Organic Letters, 8, 907-909.
https://doi.org/10.1021/ol053044r
[107]  Tateno, K., Ogawa, R., Sakamoto, R., Tsuchiya, M., Kutsumura, N., Otani, T., Ono, K., Kawai, H. and Saito, T. (2018) Dibenzopyrrolo[1,2-a][1,8]naphthyridines: Synthesis and Structural Modification of Fluorescent L-Shaped Heteroarenes. Journal of Organic Chemistry, 83, 690-702.
https://doi.org/10.1021/acs.joc.7b02674
[108]  Dassonneville, B., Schollmeyer, D., Witulski, B. and Detert, H. (2010) 4-Methyl-9-[(4-methyl-phen-yl)sulfon-yl]thio-pyrano[3,4-b]indole-3(9H)-thione. Acta Crystallographica, 66, o2665.
https://doi.org/10.1107/S1600536810038201
[109]  Kobayashi, G., Matsuda, Y., Natsuki, R. and Tominaga, Y. (1971) Studies on Indole Derivaties. XI. Reactions of 3-Indolylacetonitrile Derivatives with Carbondisulfide. Yakugaku Zasshi, 91, 203-209.
https://doi.org/10.1248/yakushi1947.91.2_203
[110]  Anaya de Parrodi, C. and Walsh, P.J. (2009) All Kinds of Reactivity: Recent Breakthroughs in Metal-Catalyzed Alkyne Chemistry. Angewandte Chemie International Edition, 48, 4679-4682.
https://doi.org/10.1002/anie.200900900
[111]  Feldman, K.S., Bruendl, M.M., Schildknegt, K. and Bohnstedt, A.C. (1996) Inter-and Intramolecular Addition/Cyclizations of Sulfonamide Anions with Alkynyliodonium Triflates. Synthesis of Dihydropyrrole, Pyrrole, Indole, and Tosylenamide Heterocycles. Journal of Organic Chemistry, 61, 5440-5452.
https://doi.org/10.1021/jo9605814
[112]  Witulski, B. and Stengel, T. (1998) N-Functionalized 1-Alkynylamides: New Building Blocks for Transition Metal Mediated Inter- and Intramolecular [2 + 2 + 1] Cycloadditions. Angewandte Chemie International Edition, 37, 489-492.
https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4%3C489::AID-ANIE489%3E3.0.CO;2-N
[113]  Dunetz, J.R. and Danheiser, R.L. (2003) Copper-Mediated N-Alkynylation of Carbamates, Ureas, and Sulfonamides. A General Method for the Synthesis of Ynamides. Organic Letters, 21, 4011-4014.
https://doi.org/10.1021/ol035647d
[114]  Zhang, Y., Hsung, R.P., Tracey, M.R., Kurtz, K.C. and Vera, E.L. (2004) Copper Sulfate-Pentahydrate-1,10-Phenanthroline Catalyzed Amidations of Alkynyl Bromides. Synthesis of Heteroaromatic Amine Substituted Ynamides. Organic Letters, 7, 1151-1154.
https://doi.org/10.1021/ol049827e
[115]  Brückner, D. (2006) Synthesis of Ynamides from Formamides. Tetrahedron, 62, 3809-3814.
https://doi.org/10.1016/j.tet.2005.11.091
[116]  Zhdankin, V.V. and Stang, P.J. (1998) Alkynyliodonium Salts in Organic Synthesis. Tetrahedron, 54, 10927-10966.
https://doi.org/10.1016/50040-4020[98]00410-4
[117]  Liu, J., Chen, M., Zhang, L. and Liu, Y. (2015) Gold(I)-Catalyzed 1,2-Acyloxy Migration/[3+2] Cycloaddition of 1,6-Diynes with an Ynamide Propargyl Ester Moiety: Highly Efficient Synthesis of Functionalized Cyclopenta[b]indoles. Chemistry— A European Journal, 21, 1009-1013.
https://doi.org/10.1002/chem.201405965
[118]  Martínez-Esperón, M.F., Rodríguez, D., Castedo, L. and Saá, C. (2005) Synthesis of Carbazoles from Ynamides by Intramolecular Dehydro Diels-Alder Reactions. Organic Letters, 7, 2213-2216.
https://doi.org/10.1021/ol050609a
[119]  Martínez-Esperón, M.F., Rodríguez, D., Castedo, L. and Saá, C. (2008) Synthesis of Carbazoles by Dehydro Diels-Alder Reactions of Ynamides. Tetrahedron, 64, 3674-3686.
https://doi.org/10.1016/j.tet.2008.02.029
[120]  Diaz, M., Cobas, A., Guitián, E. and Castedo, L. (2001) Synthesis of Ellipticine by Hetaryne Cycloadditions—Control of Regioselectivity. European Journal of Organic Chemistry, 2001, 4543-4549.
https://doi.org/10.1002/1099-0690(200112)2001:23<4543::AID-EJOC4543>3.0.CO;2-%23
[121]  Moody, C.J. and Rahimtoola, K.F. (1990) Diels-Alder Reactivity of Pyrano[4,3-b]indol-3-ones, Indole 2,3-Quinodimethane Analogues. Journal of the Chemical Society Perkin Transactions 1, No. 3, 673-679.
https://doi.org/10.1039/P19900000673

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133