全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Propagation of Gaussian Schell-Model Array Beams through a Jet Engine Exhaust

DOI: 10.4236/opj.2023.133004, PP. 47-61

Keywords: Gaussian Schell Model Array Beams, Jet Engine Exhaust, Spectral Density, Propagation Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here a Gaussian Shell Model Array (GSMA) beam is used to investigate the propagation characteristics in the jet engine exhaust region. It has great significance to improve various optical systems for wide application in trapping cold atoms, creating gratings, and atmospheric optical communication. We calculate analytical formulas for the spectral density (SD) and the propagation factors Mx2 and My2 of a GSMA beam. The influence of inner scale of turbulence in the jet engine exhaust region on its power spectrum has been also analyzed. According to these results, the influence of turbulence in a jet engine exhaust on a GSMA beam has been reduced by changing the parameters of light source and turbulence. For example, it is an excellent tool for mitigation of the jet engine exhaust-induced anisotropy of turbulence to increase the source coherence length, the root-mean-squared (rms) beam width, the wavelength or reduce the outer scale of turbulence.

References

[1]  Ji, X., Zhang, E. and Lu, B. (2006) Changes in the Spectrum of Gaussian Schell-Model Beams Propagating through Turbulent Atmosphere. Optics Communications, 259, 1-6.
https://doi.org/10.1016/j.optcom.2005.08.019
[2]  Sahin, S. and Korotkova, O. (2012) Light Sources Generating Far Fields with Tunable Flat Profiles. Optics Letters, 37, 2970-2972.
https://doi.org/10.1364/OL.37.002970
[3]  Anderson, B.P., Gustavson, T.L. and Kasevich, M.A. (1996) Atom Trapping in Nondissipative Optical Lattices. Physical Review A, 53, R3727-R3730.
https://doi.org/10.1103/PhysRevA.53.R3727
[4]  MacDonalda, M.P., Neale, S., Paterson, L., Riches, A., Spalding, G.C. and Dholakia, K. (2003) Microfluidic Optical Sorting: Particle Selection in an Optical Lattice. Nature, 426, 421-424.
https://doi.org/10.1038/nature02144
[5]  Gori, F. and Santarsiero, M. (2007) Devising Genuine Spatial Correlation Functions. Optics Letters, 32, 3531-3533.
https://doi.org/10.1364/OL.32.003531
[6]  Mei, Z., Zhao, D., Korotkova, O. and Mao, Y. (2015) Gaussian Schell-Model Arrays. Optical Letters, 40, 5662-5665.
https://doi.org/10.1364/OL.40.005662
[7]  Neuman, K.C. and Block, S.M. (2004) Optical Trapping. Review of Scientific Instruments, 75, 2787-809.
https://doi.org/10.1063/1.1785844
[8]  Mao, Y., Mei, Z. and Gu, J. (2016) Propagation of Gaussian Schell-Model Array Beams in Free Space and Atmospheric Turbulence. Optics & Laser Technology, 86, 14-20.
https://doi.org/10.1016/j.optlastec.2016.06.007
[9]  Gu, Y.L. and Gbur, G. (2013) Scintillation of Nonuniformly Correlated Beams in Atmospheric Turbulence. Optics Letters, 38, 1395-1397.
https://doi.org/10.1364/OL.38.001395
[10]  Du, S.C., Yuan, Y.S., Liang, C.H. and Cai, Y.J. (2013) Second-Order Moments of a Multi-Gaussian Schell-Model Beam in a Turbulent Atmosphere. Optics and Laser Technology, 50, 14-19.
https://doi.org/10.1016/j.optlastec.2013.01.027
[11]  Yuan, Y.S., Liu, X.L., Wang, F., Chen, Y.H., Cai, Y.J., Qu, J. and Eyyuboglu, H.T. (2013) Scintillation Index of a Multi-Gaussian Schell-Model Beam in Turbulent Atmosphere. Optics Communications, 305, 57-65.
https://doi.org/10.1016/j.optcom.2013.04.076
[12]  Korotkova, O., Avramov-Zamurovic, S., Nelson, C., Malek-Madani, R., Gu, Y. and Gbur, G. (2014) Scintillation Reduction in Multi-Gaussian Schell-Model Beams Propagating in Atmospheric Turbulence. Proceedings of the SPIE, 9224, 92240M.
https://doi.org/10.1117/12.2062601
[13]  Xu, H.F., Zhang, Z., Qu, J. and Huang, W. (2014) Propagation Factors of Cosine-Gaussian-Correlated Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Express, 22, 22479-22489.
https://doi.org/10.1364/OE.22.022479
[14]  Chen, R., Liu, L., Zhu, S.J., Wu, G.F., Wang, F. and Cai, Y.J. (2014) Statistical Properties of a Laguerre-Gaussian Schell-Model Beam in Turbulent Atmosphere. Optics Express, 22, 1871-1883.
https://doi.org/10.1364/OE.22.001871
[15]  Wang, X.Y., Yao, M.W., Qiu, Z.L., Yi, X. and Liu, Z.J. (2015) Evolution Properties of Bessel-Gaussian Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Express, 23, 12508-12523.
https://doi.org/10.1364/OE.23.012508
[16]  Xu, Y., Li, Y., Dan, Y., Du, Q. and Wang, S. (2016) Propagation Based on Second-Order Moments for Partially Coherent Laguerre-Gaussian Beams through Atmospheric Turbulence. Journal of Modern Optics, 63, 1121-1128.
https://doi.org/10.1080/09500340.2015.1128006
[17]  Zhou, Y., Yuan, Y.S., Qu, J. and Huang, W. (2016) Propagation Properties of Laguerre-Gaussian Correlated Schell-Model Beam in Non-Kolmogorov Turbulence. Optics Express, 24, 10682-10693.
https://doi.org/10.1364/OE.24.010682
[18]  Lungu, J., Siwale, L., Kashinga, R.J., Chama, S. and Bereczky, A. (2021) Correlation of Performance, Exhaust Gas Temperature and Speed of a Spark Ignition Engine Using Kiva4. Journal of Power and Energy Engineering, 9, 53-78.
https://doi.org/10.4236/jpee.2021.98004
[19]  Ighodaro, O., Aburime, E. and Erameh, A. (2022) Off-Design Modelling of a Turbo Jet Engine with Operative Afterburner. Open Journal of Energy Efficiency, 11, 88-107.
https://doi.org/10.4236/ojee.2022.113007
[20]  Cai, Y. and Zhu, S.-Y. (2004) Ghost Interference with Partially Coherent Radiation. Optics Letters, 29, 2716-2718.
https://doi.org/10.1364/OL.29.002716
[21]  Zhou, P., Liu, Z.J., Xu, X.J. and Chu, X.X. (2009) Propagation of Coherently Combined Flattened Laser Beam Array in Turbulent Atmosphere. Optics and Laser Technology, 41, 403-407.
https://doi.org/10.1016/j.optlastec.2008.08.009
[22]  Andrews, L.C. and Phillips, R.L. (2005) Laser Beams Propagation through Random Media, 2nd Edition. SPIE Press, Bellingham, WA.
https://doi.org/10.1117/3.626196
[23]  Robert, C., Conan, J.M., Michau, V., Renard, J.B., Robert, C. and Dalaudier, F. (2008) Retrieving Parameters of the Anisotropic Refractive Index Fluctuations Spectrum in the Stratosphere from Balloon-Borne Observations of Stellar Scintillation. Journal of the Optical Society of America A, 25, 379-393.
https://doi.org/10.1364/JOSAA.25.000379
[24]  Otten, L.J., Roggemann, M.C., Al Jones, B., Lane, J. and Black, D.G. (1999) High Bandwidth Atmospheric Turbulence Data Collection Platform. SPIE PRESS, 3866, 23-32.
https://doi.org/10.1117/12.371331
[25]  Wang, F. and Korotkova, O. (2016) Random Optical Beam Propagation in Anisotropic Turbulence along Horizontal Links. Optics Express, 24, 24422-24434.
https://doi.org/10.1364/OE.24.024422
[26]  Grechko, G.M., Gurvich, A.S., Kan, V., Kireev, S.V. and Savchenko, S.A. (1992) Anisotropy of Spatial Structures in the Middle Atmosphere. Advances in Space Research, 12, 169-175.
https://doi.org/10.1016/0273-1177(92)90462-7
[27]  Sjoqvist, L. (2008) Laser Beam Propagation in Jet Engine Plume Environments: A Review. Technologies for Optical Countermeasures V, 7115, 71150C.
https://doi.org/10.1117/12.803543
[28]  Hogge, C.B. and Visinsky, W.L. (1971) Laser Beam Probing of Jet Exhaust Turbulence. Applied Optics, 10, 889-892.
https://doi.org/10.1364/AO.10.000889
[29]  Barrett, J.L. and Budni, P.A. (1992) Laser Beam Propagation through Strong Turbulence. Journal of Applied Physics, 71, 1124-1127.
https://doi.org/10.1063/1.351276
[30]  Henriksson, M., Sjoqvist, L. and Gustafsson, O. (2006) Experimental Study of Mid-IR Laser Beam Wander Close to a Jet Engine Exhaust. Proceedings of SPIE, 6397, 639709.
https://doi.org/10.1117/12.689638
[31]  Mahdieh, M.H. (2008) Numerical Approach to Laser Beam Propagation through Turbulent Atmosphere and Evaluation of Beam Quality Factor. Optics Communications, 281, 3395-3402.
https://doi.org/10.1016/j.optcom.2008.02.040
[32]  Henriksson, M., Sjoqvist, L., Seiffer, D., Wendelstein, N. and Sucher, E. (2008) Laser Beam Propagation Experiments along and across a Jet Engine Plume. Proceedings of SPIE, 7115, 71150E.
https://doi.org/10.1117/12.799202
[33]  Ding, C., Korotkova, O., Li, D., Zhao, D. and Pan, L. (2020) Propagation of Gaussian Schell-Model Beams through a Jet Engine Exhaust. Optics Express, 28, 1037-1050.
https://doi.org/10.1364/OE.381242
[34]  Lutomirski, R.F. (1970) Propagation of a Finite Optical Beam in an Inhomogeneous Medium. Applied Optics, 10, 1652-1658.
https://doi.org/10.1364/AO.10.001652
[35]  Bastiaans, M.J. (1978) The Wigner Distribution Function Applied to Optical Signals and Systems. Optics Communications, 25, 26-30.
https://doi.org/10.1016/0030-4018(78)90080-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133