全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

暗纹东方鲀与红鳍东方鲀鳔的转录组比较分析
Comparative Transcriptomic Analysis of Swim Bladder from Takifugu obscurus and Takifugu rubripes

DOI: 10.12677/OJFR.2023.101001, PP. 1-12

Keywords: 暗纹东方鲀,红鳍东方鲀,鳔,RNA-Seq
Takifugu obscurus
, Takifugu rubripes, Swim Bladder, RNA-Seq

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究暗纹东方鲀和红鳍东方鲀的差异,本研究通过转录组测序技术(RNA-Seq)及生物信息学分析比较了暗纹东方鲀和红鳍东方鲀的鳔组织(TOSB vs TRSB)在转录水平上的差异。结果表明:在两种东方鲀中共得到了4062个差异表达基因(以p.adj < 0.05 & |log2foldchange| ≥ 1为阈值),其中上调表达的差异基因有2282个,下调表达的差异基因有1780个;通过GO和KEGG富集分析发现,差异基因显著富集到了与信号传导和听力相关的通路中。研究表明两种东方鲀在信号传导和听力功能方面存在显著差异,这种差异可能与其生存环境的不同相关。本研究为暗纹东方鲀与红鳍东方鲀的后续研究提供了数据支持,同时也为其他生物鳔组织的研究提供了参考。
In order to explore the differences between the Takifugu obscurus and Takifugu rubripes, we compared the results of the transcription level in the two fish swim bladders (TOSB vs TRSB) via transcriptome sequencing technology (RNA-Seq) and bioinformatics analysis. In the present study, p.adj < 0.05 & |log2foldchange| ≥ 1 were set as the threshold for screening differentially expressed genes (DEGs). Results showed that a total of 4062 genes were identified as DEGs in the two Oriental pufferfish, including 2282 up-regulated DEGs and 1780 down-regulated DEGs. In addition, GO and KEGG enrichment analysis revealed that the terms or pathways related to signaling and hearing were significantly enriched. Studies have shown that the two puffer fish were significantly different in signal transduction and hearing function, which may be related to differences in their living environments. In conclusion, our study offered data supporting for the follow-up research of T. obscurus and T. rubripes, as well as providing a reference for the study of swim bladder tissues in other fish species.

References

[1]  F?nge, R. (1983) Gas Exchange in Fish Swimbladder. Reviews of Physiology, Biochemistry and Pharmacology, 97, 111-158.
https://doi.org/10.1007/BFb0035347
[2]  Smith, F.M. and Croll, R.P. (2011) Autonomic Control of the Swimbladder. Autonomic Neuroscience: Basic & Clinical, 165, 140-148.
https://doi.org/10.1016/j.autneu.2010.08.002
[3]  Holbrook, R.I. and De Perera, T.B. (2011) Fish Navigation in the Vertical Dimension: Can Fish Use Hydrostatic Pressure to Determine Depth? Fish and Fisheries, 12, 370-379.
https://doi.org/10.1111/j.1467-2979.2010.00399.x
[4]  Zheng, W., Wang, Z., Collins, J.E., et al. (2011) Comparative Transcriptome Analyses Indicate Molecular Homology of Zebrafish Swimbladder and Mammalian Lung. PLOS ONE, 6, e24019.
https://doi.org/10.1371/journal.pone.0024019
[5]  Finney, J.L., Robertson, G.N., Mcgee, C.A., et al. (2006) Structure and Autonomic Innervation of the Swimbladder in the Zebrafish (Danio rerio). The Journal of Comparative Neurology, 495, 587-606.
https://doi.org/10.1002/cne.20948
[6]  Pelster, B. (2014) Swimbladder Function and the Spawning Migration of the European eel Anguilla anguilla. Frontiers in Physiology, 5, 486.
https://doi.org/10.3389/fphys.2014.00486
[7]  门强, 雷霁霖, 武云飞. 鳔器官的发育对人工培育鱼苗的影响[J]. 海洋水产研究, 2003(1): 80-84.
[8]  刘阳, 温海深, 黄杰斯, 等. 花鲈鳃与鳔器官发育的组织学与形态学观察[J]. 水产学报, 2019, 43(12): 2476-2484.
[9]  张云霞, 李强, 张云, 等. 2020年我国主养海水鱼国际市场变化及贸易形势分析[J]. 渔业信息与战略, 2021, 36(3): 169-178.
[10]  Kato, A., Doi, H., Nakada, T., et al. (2005) Takifugu obscurus Is a Euryhaline Fugu Species Very Close to Takifugu rubripes and Suitable for Studying Osmoregulation. BMC Physiology, 5, Article No. 18.
https://doi.org/10.1186/1472-6793-5-18
[11]  闫兵兵, 陈义培, 卢玉平, 等. 暗纹东方纯“中洋1号”新品种育种技术[J]. 科学养鱼, 2019(7): 6-7.
[12]  邓捷春, 王锡昌, 刘源. 暗纹东方鲀与红鳍东方鲀滋味成分差异研究[J]. 食品工业科技, 2010, 31(3): 106-108.
[13]  Gao, F.X., Lu, W.J., Shi, Y., et al. (2021) Transcriptome Profiling Revealed the Growth Superiority of Hybrid Pufferfish Derived from Takifugu obscures ♀ × Takifugu rubripes ♂. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 40, Article ID: 100912.
https://doi.org/10.1016/j.cbd.2021.100912
[14]  Wang, S.S., Yu, Y., Sun, Y., et al. (2019) Comparison of Physicochemical Characteristics and Fibril Formation Ability of Collagens Extracted from the Skin of Farmed River Puffer (Takifugu obscurus) and Tiger Puffer (Takifugu rubripes). Marine Drugs, 17, 462.
https://doi.org/10.3390/md17080462
[15]  Shang, F., Lu, Y., Li, Y., et al. (2022) Transcriptome Analysis Identifies Key Metabolic Changes in the Brain of Takifugu rubripes in Response to Chronic Hypoxia. Genes, 13, 1347.
https://doi.org/10.3390/genes13081347
[16]  Zaccone, D., Sengar, M., Lauriano, E.R., et al. (2012) Morphology and Innervation of the Teleost Physostome Swim Bladders and Their Functional Evolution in Non-Teleostean Lineages. Acta Histochemica, 114, 763-772.
https://doi.org/10.1016/j.acthis.2012.01.003
[17]  Su, S.Y., Hsieh, C.L., Wu, S.L., et al. (2009) Transcriptomic Analysis of EGb 761-Regulated Neuroactive Receptor Pathway in Vivo. Journal of Ethnopharmacology, 123, 68-73.
https://doi.org/10.1016/j.jep.2009.02.027
[18]  潘玲珍, 闫智勇, 左长英, 等. 长期使用地西泮对神经活性配体受体相互作用信号通路的影响[J]. 中国药科大学学报, 2011, 42(5): 443-446.
[19]  Zhang, F., Zhang, L., Qi, Y., et al. (2016) Mitochondrial cAMP Signaling. Cellular and Molecular Life Sciences: CMLS, 73, 4577-4590.
https://doi.org/10.1007/s00018-016-2282-2
[20]  Tresguerres, M., Levin, L.R. and Buck, J. (2011) Intracellular cAMP Signaling by Soluble Adenylyl Cyclase. Kidney International, 79, 1277-1288.
https://doi.org/10.1038/ki.2011.95
[21]  Cooper, D.M. (2003) Regulation and Organization of Adenylyl Cyclases and cAMP. The Biochemical Journal, 375, 517-529.
https://doi.org/10.1042/bj20031061
[22]  Assan, D., Mustapha, U.F., Chen, H., et al. (2021) The Roles of Neuropeptide Y (Npy) and Peptide YY (Pyy) in Teleost Food Intake: A Mini Review. Life, 11, 547.
https://doi.org/10.3390/life11060547
[23]  Syambani Ulhaq, Z. (2020) Dopamine D2 Receptor Influences Eye Development and Function in Zebrafish. Archivos de la Sociedad Espanola de Oftalmologia, 95, 84-89.
https://doi.org/10.1016/j.oftal.2019.11.013
[24]  Aruna, A., Nagarajan, G. and Chang, C.F. (2015) The Acute Salinity Changes Activate the Dual Pathways of Endocrine Responses in the Brain and Pituitary of Tilapia. General and Comparative Endocrinology, 211, 154-164.
https://doi.org/10.1016/j.ygcen.2014.12.005
[25]  Zhu, Y., Song, D., Tran, N.-T., et al. (2007) The Effects of the Members of Growth Hormone Family Knockdown in Zebrafish Development. General and Comparative Endocrinology, 150, 395-404.
https://doi.org/10.1016/j.ygcen.2006.10.009
[26]  Soares, D. and Niemiller, M.L. (2013) Sensory Adaptations of Fishes to Subterranean Environments. BioScience, 63, 274-283.
https://doi.org/10.1525/bio.2013.63.4.7
[27]  Scholik, A.R. and Yan, H.Y. (2002) The Effects of Noise on the Auditory Sensitivity of the Bluegill Sunfish, Lepomis macrochirus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 133, 43-52.
https://doi.org/10.1016/S1095-6433(02)00108-3
[28]  Popper, A.N. and Schilt, C.R. (2008) Hearing and Acoustic Behavior: Basic and Applied Considerations. In: Webb, J.F., Fay, R.R. and Popper, A.N., Eds., Fish Bioacoustics: With 81 Illustrations, Springer, New York, 17-48.
https://doi.org/10.1007/978-0-387-73029-5_2
[29]  Navaratnam, D.S., Su, H.S., Scott, S.P., et al. (1996) Proliferation in the Auditory Receptor Epithelium Mediated by a Cyclic AMP-Dependent Signaling Pathway. Nature Medicine, 2, 1136-1139.
https://doi.org/10.1038/nm1096-1136
[30]  Webber, A. and Raz, Y. (2006) Axon Guidance Cues in Auditory Development. The Anatomical Record Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 288, 390-396.
https://doi.org/10.1002/ar.a.20299
[31]  Joshi, I. and Wang, L.Y. (2002) Developmental Profiles of Glutamate Receptors and Synaptic Transmission at a Single Synapse in the Mouse Auditory Brainstem. The Journal of Physiology, 540, 861-873.
https://doi.org/10.1113/jphysiol.2001.013506
[32]  Booth, K.T., Ghaffar, A., Rashid, M., et al. (2020) Novel Loss-of-Function Mutations in COCH Cause Autosomal Recessive Nonsyndromic Hearing Loss. Human Genetics, 139, 1565-1574.
https://doi.org/10.1007/s00439-020-02197-5
[33]  陈小玲, 唐峰, 贾立峰, 等. 老年性聋小鼠内耳突触调控钾通道基因的筛选与鉴定[J]. 第三军医大学学报, 2020, 42(8): 765-771.
[34]  Safieddine, S. and Wenthold, R.J. (1997) The Glutamate Receptor Subunit Delta1 Is Highly Expressed in Hair Cells of the Auditory and Vestibular Systems. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 17, 7523-7531.
https://doi.org/10.1523/JNEUROSCI.17-19-07523.1997
[35]  Murashita, H., Tabuchi, K., Sakai, S., et al. (2007) The Effect of a GABAA Agonist Muscimol on Acoustic Injury of the Mouse Cochlea. Neuroscience Letters, 418, 18-21.
https://doi.org/10.1016/j.neulet.2007.02.060
[36]  Jamal, L., Zhang, H., Finlayson, P.G., et al. (2011) The Level and Distribution of the GABA(B)R2 Receptor Subunit in the Rat’s Central Auditory System. Neuroscience, 181, 243-256.
https://doi.org/10.1016/j.neuroscience.2011.02.050
[37]  Yang, Y., Wang, X., Liu, Y., et al. (2018) Transcriptome Analysis Reveals Enrichment of Genes Associated with Auditory System in Swimbladder of Channel Catfish. Comparative Biochemistry and Physiology Part D, Genomics & Proteomics, 27, 30-39.
https://doi.org/10.1016/j.cbd.2018.04.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133