全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大麻二酚在神经病理性疼痛中的作用研究进展
Research Progress on the Role of Cannabidiol in Neuropathic Pain

DOI: 10.12677/IJPN.2023.122003, PP. 26-32

Keywords: 大麻二酚,神经病理性疼痛,分子靶点,Cannabidiol, Neuropathic Pain, Molecular Targets

Full-Text   Cite this paper   Add to My Lib

Abstract:

神经病理性疼痛(Neuropathic Pain, NP)因为发病率高,目前缺乏有效的治疗药物,严重影响患者的生活质量,也给个人和社会带来沉重负担。研究和探讨新的治疗药物和治疗方案是亟待解决的重要课题。大麻二酚(Cannabidiol, CBD)是一种非精神活性的植物大麻素,具有良好的耐受性和安全性,在多种NP模型中都表现出镇痛作用;但由于对其药理学特性尚未完全研究清楚,临床应用仍然有限。本文主要对CBD在NP中的治疗作用和主要分子靶点予以综述,为相关研究与临床应用提供理论依据。
Due to the high incidence of Neuropathic Pain (NP) and the lack of effective drug treatments, NP affects the life quality of patients severely and brings a heavy burden to individuals and society. It is an urgent task to study and explore new therapeutic drugs and treatment regimens for NP. Cannabidiol (CBD) is a non-psychoactive plant cannabinoid with good tolerance and safety, and has shown analgesic effects in a variety of NP models. However, due to its complex pharmacological properties, its clinical application is still limited. This article mainly reviews the therapeutic effects and major molecular targets of CBD in NP, hoping to provide a theoretical basis for related research and clinical application.

References

[1]  Mücke, M., Phillips, T., Radbruch, L., et al. (2018) Cannabis-Based Medicines for Chronic Neuropathic Pain in Adults. Cochrane Database of Systematic Reviews, 3, Article No. CD012182.
https://doi.org/10.1002/14651858.CD012182.pub2
[2]  Kocot-K?pska, M., Zaj?czkowska, R., Mika, J., et al. (2021) Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics, 13, Article 450.
https://doi.org/10.3390/pharmaceutics13040450
[3]  杜涛, 袁文茜, 曹伯旭, 等. 慢性神经病理性疼痛[J]. 中国疼痛医学杂志, 2021, 27(7): 481-485.
[4]  Casey, S.L. and Vaughan, C.W. (2018) Plant-Based Cannabinoids for the Treatment of Chronic Neuropathic Pain. Medicines (Basel), 5, Article 67.
https://doi.org/10.3390/medicines5030067
[5]  Turk, D.C., Audette, J., Levy, R.M., et al. (2010) Assessment and Treatment of Psychosocial Comorbidities in Patients with Neuropathic Pain. Mayo Clinic Proceedings, 85, 42-50.
https://doi.org/10.4065/mcp.2009.0648
[6]  Mlost, J., Bryk, M. and Starowicz, K. (2020) Cannabidiol for Pain Treatment: Focus on Pharmacology and Mechanism of Action. International Journal of Molecular Sciences, 21, Article 8870.
https://doi.org/10.3390/ijms21228870
[7]  李倩, 李玲玲, 李爽, 等. 脊髓A1型星形胶质细胞在外周炎性痛中的动态变化[J]. 中国实验动物学报, 2021, 29(5): 578-584.
[8]  Kim, Y.C., Casta?eda, A.M., Lee, C.S., et al. (2018) Efficacy and Safety of Lidocaine Infusion Treatment for Neuropathic Pain: A Randomized, Double-Blind, and Placebo-Controlled Study. Regional Anesthesia & Pain Medicine, 43, 415-424.
https://doi.org/10.1097/AAP.0000000000000741
[9]  Alcántara Montero, A., Sánchez Carnerero, C.I. and Goi-coechea García, C. (2019) Emerging Therapies in Clinical Development and New Contributions for Neuropathic Pain. Revista Espa?ola de Anestesiología y Reanimación, 66, 324-334.
https://doi.org/10.1016/j.redare.2019.02.004
[10]  Egunsola, O., Wylie, C.E., Chitty, K.M., et al. (2019) Systematic Review of the Efficacy and Safety of Gabapentin and Pregabalin for Pain in Children and Adolescents. Anesthesia & An-algesia, 128, 811-819.
https://doi.org/10.1213/ANE.0000000000003936
[11]  Tzimas, P.S., Petrakis, E.A., Halabalaki, M., et al. (2021) Effective Determination of the Principal Non-Psychoactive Cannabinoids in Fiber-Type Cannabis sativa L. by UPLC-PDA Following a Comprehensive Design and Optimization of Extraction Methodolog. Analytica Chimica Acta, 1150, Article ID: 338200.
https://doi.org/10.1016/j.aca.2021.338200
[12]  沈宝玉, 任雁明, 杨根梦, 等. 大麻二酚减轻甲基苯丙胺诱导的大鼠单胺类神经递质改变[J]. 中国比较医学杂志, 2022, 32(11): 18-25.
[13]  García-Gutiérrez, M.S., Navarrete, F., Gasparyan, A., et al. (2020) Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules, 10, Article 1575.
https://doi.org/10.3390/biom10111575
[14]  Abraham, A.D., Leung, E.J.Y., Wong, B.A., et al. (2020) Orally Consumed Cannabinoids Provide Long-Lasting Relief of Allodynia in a Mouse Model of Chronic Neuropathic Pain. Neuropsychopharmacology, 45, 1105-1114.
https://doi.org/10.1038/s41386-019-0585-3
[15]  Xiong, W., Cui, T., Cheng, K., et al. (2012) Cannabinoids Sup-press Inflammatory and Neuropathic Pain by Targeting α3 Glycine Receptors. Journal of Experimental Medicine, 209, 1121-1134.
https://doi.org/10.1084/jem.20120242
[16]  King, K.M., Myers, A.M., Soroka-Monzo, A.J., et al. (2017) Single and Combined Effects of Δ9-Tetrahydrocannabinol and Cannabidiol in a Mouse Model of Chemothera-py-Induced Neuropathic Pain. British Journal of Pharmacology, 74, 2832-2841.
https://doi.org/10.1111/bph.13887
[17]  Muller, C., Morales, P. and Reggio, P.H. (2019) Cannabinoid Ligands Targeting TRP Channels. Frontiers in Molecular Neuroscience, 11, Article 487.
https://doi.org/10.3389/fnmol.2018.00487
[18]  潘倩, 田晓明, 尹毅青. 瞬时感受器电位香草酸亚型1受体及其调节剂对神经病理性疼痛的作用研究进展[J]. 国际药学研究杂志, 2020, 47(6): 409-414.
[19]  Marwaha, L., Bansal, Y., Singh, R., et al. (2016) TRP Channels: Potential Drug Target for Neuropathic Pain. Inflammopharmacology, 24, 305-317.
https://doi.org/10.1007/s10787-016-0288-x
[20]  Soubrane, C., Mazzarella, E., Russo, E., et al. (2014) Nonpsychotropic Plant Cannabinoids, Cannabidivarin (CBDV) and Cannabidiol (CBD), Activate and Desensitize Tran-sient Receptor Potential Vanilloid 1 (TRPV1) Channels in Vitro: Potential for the Treatment of Neuronal Hyperexcitabil-ity. ACS Chemical Neuroscience, 5, 1131-1141.
https://doi.org/10.1021/cn5000524
[21]  Baker, M.D. and Nassar, M.A. (2020) Painful and Painless Mutations of SCN9A and SCN11A Voltage-Gated Sodium Channels. Pflügers Archiv, 472, 865-880.
https://doi.org/10.1007/s00424-020-02419-9
[22]  McDermott, L.A., Weir, G.A., Themistocleous, A.C., et al. (2019) Defining the Functional Role of NaV1.7 in Human Nociception. Neuron, 101, 905-919.e8.
https://doi.org/10.1016/j.neuron.2019.01.047
[23]  Hameed, S. (2019) Nav1.7 and Nav1.8: Role in the Pathophysi-ology of Pain. Molecular Pain, 15, 1-11.
https://doi.org/10.1177/1744806919858801
[24]  Tzoumaka, E., Tischler, A.C., Sangameswaran, L., et al. (2000) Differential Distribution of the Tetrodotoxin-Sensitive rPN4/NaCh6/Scn8a Sodium Channel in the Nervous System. Journal of Neuroscience Research, 60, 37-44.
https://doi.org/10.1002/(SICI)1097-4547(20000401)60:1<37::AID-JNR4>3.0.CO;2-W
[25]  Ding, H.H., Zhang, S.B., Lv, Y.Y., et al. (2019) TNF-α/STAT3 Pathway Epigenetically Upregulates Nav1.6 Expression in DRG and Con-tributes to Neuropathic Pain Induced by L5-VRT. Journal of Neuroinflammation, 6, Article No. 29.
https://doi.org/10.1186/s12974-019-1421-8
[26]  Sait, L.G., Sula, A., Ghovanloo, M.R., et al. (2020) Cannabidiol Interactions with Voltage-Gated Sodium Channels. Elife, 9, e58593.
https://doi.org/10.7554/eLife.58593
[27]  Watkins, A.R. (2019) Cannabinoid Interactions with Ion Channels and Receptors. Channels (Austin), 13, 162-167.
https://doi.org/10.1080/19336950.2019.1615824
[28]  Ghovanloo, M.R., Shuart, N.G., Mezeyova, J., et al. (2018) Inhibitory Effects of Cannabidiol on Voltage-Dependent Sodium Currents. Journal of Biological Chemistry, 293, 16546-16558.
https://doi.org/10.1074/jbc.RA118.004929
[29]  Breitinger, U. and Breitinger, H.G. (2020) Modula-tors of the Inhibitory Glycine Receptor. ACS Chemical Neuroscience, 11, 1706-1725.
https://doi.org/10.1021/acschemneuro.0c00054
[30]  Zeilhofer, H.U., Werynska, K., Gingras, J., et al. (2021) Gly-cine Receptors in Spinal Nociceptive Control—An Update. Biomolecules, 11, Article 846.
https://doi.org/10.3390/biom11060846
[31]  Silvestro, S., Schepici, G., Bramanti, P., et al. (2020) Molecular Tar-gets of Cannabidiol in Experimental Models of Neurological Disease. Molecules, 25, Article 5186.
https://doi.org/10.3390/molecules25215186
[32]  Haleem, D.J. (2019) Targeting Serotonin1A Receptors for Treat-ing Chronic Pain and Depression. Current Neuropharmacology, 17, 1098-1108.
https://doi.org/10.2174/1570159X17666190811161807
[33]  Jesus, C.H.A., Redivo, D.D.B., Gasparin, A.T., et al. (2019) Cannabidiol Attenuates Mechanical Allodynia in Streptozotocin-Induced Diabetic Rats via Serotonergic System Activation through 5-HT1A Receptors. Brain Research, 1715, 156-164.
https://doi.org/10.1016/j.brainres.2019.03.014
[34]  De Gregorio, D., McLaughlin, R.J., Posa, L., et al. (2019) Cannabidiol Modulates Serotonergic Transmission and Reverses both Allodynia and Anxiety-Like Behavior in a Model of Neuropathic Pain. Pain, 160, 136-150.
https://doi.org/10.1097/j.pain.0000000000001386

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133