全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

吸附式大气集水材料制备与应用研究进展
Research Progress in the Preparation and Application of Adsorption Type Atmospheric Water Harvesting Materials

DOI: 10.12677/AMC.2023.113007, PP. 57-62

Keywords: 大气集水,吸附,解吸;Atmospheric Water Harvesting, Adsorption, Desorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

气候变化、工业发展与人口增长导致的水资源短缺对人类发展造成了严重威胁。在不同水获取技术中,大气集水(AWH)因其不受空间或时间限制而备受关注。本文总结了AWH吸附剂的设计和研究的最新进展并阐明了控制水捕获和释放过程的结构–性能关系,总结了不同类型吸附剂的特点和局限性,为未来AWH材料合成提供了有力的参考。
The shortage of water resources caused by climate change, industrial development, and population growth poses a serious threat to human development. Among different water harvesting technolo-gies, atmospheric water harvesting (AWH) has attracted much attention due to its lack of spatial or temporal limitations. This article summarizes the latest progress in the design and research of AWH adsorbents, elucidates the structure performance relationship for controlling water capture and release processes, summarizes the characteristics and limitations of different types of adsorbents, and provides a strong reference for future AWH material synthesis.

References

[1]  Swearer, S., Feuvre, M., Shelley, J., et al. (2022) Landscape Context and Dispersal Ability as Determinants of Population Ge-netic Structure in Freshwater Fishes. Freshwater Biology, 67, 338-352.
https://doi.org/10.1111/fwb.13844
[2]  陈付爱, 牛纪娥. 太阳能热脱盐的途径和应用研究[J]. 工业水处理, 2023, 43(3): 48-54.
[3]  龙涛, 王珍, 杨玮, 邓莎, 肖巍, 顾天宇. 高矿化度矿井水脱盐技术应用现状及研究进展[J]. 水处理技术, 2023, 49(5): 11-16+25.
[4]  Wu, Y., Kong, R., Ma, C., et al. (2022) Simulation-Guided Design of Bamboo Leaf-Derived Carbon-Based High-Efficiency Evaporator for So-lar-Driven Interface Water Evaporation. Energy & Environmental Materials, 5, 1323-1331.
https://doi.org/10.1002/eem2.12251
[5]  方颖. 木质纳米纤维素复合吸湿气凝胶制备与空气集水性能研究[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2022.
[6]  武恩宇, 钱国栋, 李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[7]  张成龙. 激光制备超疏水-超亲水仿生结构表面及集水特性研究[D]: [硕士学位论文]. 温州: 温州大学, 2021.
[8]  霍香岩, 许嘉兴, 严泰森, 王如竹, 李廷贤. 吸附式空气取水物理吸附材料研究进展[J]. 科学通报, 2023, 68(11): 1392-1405.
[9]  Shi, W., Guan, W., Lei, C., et al. (2022) Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications. Angewandte Chemie, 134, e202211267.
https://doi.org/10.1002/ange.202211267
[10]  Strong, C., Carrier, Y. and Tezel, F. (2022) Experimental Optimization of Operating Conditions for an Open Bulk-Scale Silica Gel/Water Vapour Adsorption Energy Storage System. Applied Energy, 312, Article ID: 118533.
https://doi.org/10.1016/j.apenergy.2022.118533
[11]  Clark, R. and Farid, M. (2022) Experimental Investigation into Cas-cade Thermochemical Energy Storage System Using SrCl2-Cement and Zeolite-13X Materials. Applied Energy, 316, Article ID: 119145.
https://doi.org/10.1016/j.apenergy.2022.119145
[12]  Pei, C., Ou, Q. and Pui, D. (2021) Effects of Temperature and Rela-tive Humidity on Laboratory air Filter Loading Test by Hygroscopic Salts. Separation and Purification Technology, 255, Article ID: 117679.
https://doi.org/10.1016/j.seppur.2020.117679
[13]  芦坤娟, 张可喜, 曹阳, 刘钟馨, 黄玮. 生物质复合吸湿材料的制备及其空气捕水性能[J]. 水处理技术, 2023, 49(2): 57-61.
[14]  Ejeian, M., Entezari, A. and Wang, R. (2020) Solar Powered Atmospheric Water Harvesting with Enhanced LiCl/ MgSO4/ACF Composite. Applied Thermal Engineering, 176, Article ID: 115396.
https://doi.org/10.1016/j.applthermaleng.2020.115396
[15]  Huo, W., Zhang, X., Hu, Z., et al. (2018) Silica Foams with Ultra-Large Specific Surface Area Structured by Hollow Mesoporous Silica Spheres. Journal of the American Ceramic Society, 176, 1989-1991.
https://doi.org/10.1111/jace.16115
[16]  Mohanrao, R., Hema, K. and Sureshan, K. (2020) Scalable Topochemical Synthe-sis of a Pseudoprotein in Aerogel for Water-Capturing Applications. ACS Applied Polymer Materials, 2, 4985-4992.
https://doi.org/10.1021/acsapm.0c00849
[17]  Kandeal, A., Joseph, A., Elsharkawy, M., et al. (2022) Research Progress on Recent Technologies of Water Harvesting from Atmospheric Air: A Detailed Review. Sustainable Energy technologies and Assessments, 52, Article ID: 102000.
https://Doi.Org/10.1016/J.Seta.2022.102000
[18]  范吉龙. 木质纤维素基湿气发电机设计[D]: [硕士学位论文]. 泰安: 山东农业大学, 2022.
[19]  佟莹莹, 金威洋, 杨光华. 水凝胶负载干细胞外泌体在组织再生领域的应用研究进展[J]. 生物工程学报, 2023, 39(4): 1351-1362.
[20]  Yao, H., Zhang, P., Huang, Y., et al. (2020) Highly Efficient Clean Water Produc-tion from Contaminated Air with a Wide Humidity Range. Advanced Materials, 32, Article ID: 1905875.
https://doi.org/10.1002/adma.201905875
[21]  Lu, H., Shi, W., James, H., et al. (2022) Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates. Advanced Materials, 34, Article ID: 2205344.
https://doi.org/10.1002/adma.202205344
[22]  Li, R., Shi, Y., Alsaedi, M., et al. (2018) Hybrid Hydrogel with High Water Vapor Harvesting Capacity for Deployable Solar-Driven Atmospheric Water Generator. Environmental Science & Technology, 52, 11367-11377.
https://doi.org/10.1021/acs.est.8b02852
[23]  Zhao, F., Zhou, X., Liu, Y., et al. (2019) Super Moisture-Absorbent Gels for All-Weather Atmospheric Water Harvesting. Advanced Materials, 31, Article ID: 1806446.
https://doi.org/10.1002/adma.201806446
[24]  Aleid, S., Wu, M., Li, R., et al. (2022) Salting-In Effect of Zwitterionic Polymer Hydrogel Facilitates Atmospheric Water Harvesting. ACS Materials Letters, 4, 511-520.
https://doi.org/10.1021/acsmaterialslett.1c00723
[25]  Lu, H., Shi, W., Guo, Y., et al. (2022) Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. Advanced Materials, 32, Article ID: 2110079.
https://doi.org/10.1002/adma.202110079
[26]  Lei, C., Guo, Y., Guan, W., et al. (2022) Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting. Angewandte Chemie International Edition, 61, e202200271.
https://doi.org/10.1002/anie.202200271
[27]  Zhang, Z., Wang, Y., Li, Z., et al. (2022) Sustainable Hierarchical-Pored PAAS-PNIPAAm Hydrogel with Core-Shell Structure Tailored for Highly Efficient Atmospheric Water Harvesting. ACS Ap-plied Materials & Interfaces, 14, 55295-55306.
https://doi.org/10.1021/acsami.2c19840
[28]  Zhang, S., Fu, J., Xing, G., et al. (2023) Porous Materials for Atmospheric Water Harvesting. ChemistryOpen, 12, e202300046.
https://doi.org/10.1002/open.202300046

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133