全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含氮工业废水处理技术研究进展
Research Progress in the Treatment Technology of Nitrogenous Industrial Wastewater

DOI: 10.12677/WPT.2023.113011, PP. 76-90

Keywords: 含氮工业废水,脱氮技术,低成本,High Nitrogen Wastewater, Denitrification Technologies, Low Cost

Full-Text   Cite this paper   Add to My Lib

Abstract:

大部分工业生产都面临着高氮、高矿化工业废水的难题。脱氮处理过程效率较低,且耗费资源。本文介绍了生物法、膜法、气相法、氧化还原法以及其他脱氮技术的原理、影响因素和缺点,突出高脱氮率,低成本脱氮的必要性。总结不同脱氮方法的脱氮效率,经济性,并论述了当前工业脱氮研究现状及发展趋势。为响应减污降碳、节能减排的号召,将国内外现有脱氮手段与绿色能源相结合,以期为含氮工业废水的脱氮工艺进一步开发与应用提供参考。
The treatment of high-nitrogen wastewater has always been a challenging issue in most industrial production processes. The denitrification process exhibits low efficiency and consumes resources. This paper provides an overview of the principles, influencing factors, and drawbacks of denitrification technologies including biological methods, membrane methods, gas-phase methods, redox methods, and other techniques, emphasizing the necessity of achieving high denitrification rates and low-cost denitrification. The denitrification efficiencies of different methods under identical conditions are summarized, and the current research status and development trends in industrial denitrification are discussed. In response to the call for pollution reduction, carbon reduction, energy saving, and emission reduction, the integration of existing denitrification methods from both domestic and international sources with green energy is proposed, aiming to provide a reference for further development and application of denitrification processes for nitrogen-containing industrial wastewater.

References

[1]  Fang, K., Gong, H., He, W., et al. (2018) Recovering Ammonia from Municipal Wastewater by Flow-Electrode Capacitive Deioniza-tion. Chemical Engineering Journal, 348, 301-309.
https://doi.org/10.1016/j.cej.2018.04.128
[2]  刘嘉璇, 鱼涛, 于恒, 杨红梅, 刘天乐, 屈撑囤, 张晓飞, 郭志强. 含氮废水的生物处理技术现状及进展[J]. 应用化工, 2023, 52(2): 578-584.
https://doi.org/10.16581/j.cnki.issn1671-3206.20230103.017
[3]  Seifi, M. and Fazaelipoor, M.H. (2012) Modeling Simultane-ous Nitrification and Denitrification (SND) in a Fluidized Bed Biofilm Reactor. Applied Mathemaical Modelling, 36, 5603-5613.
https://doi.org/10.1016/j.apm.2012.01.004
[4]  Yuan, X. and Gao, D. (2010) Effect of Dissolved Oxygen on Nitrogen Removal and Process Control in Aerobic Granular Sludge Reactor. Journal of Hazardous Materials, 178, 1041-1045.
https://doi.org/10.1016/j.jhazmat.2010.02.045
[5]  Keene, N.A., Reusser, S.R., Scarborough, M.J., et al. (2017) Pilot Plant Demonstration of Stable and Efficient High Rate Biological Nutrient Removal with Low Dissolved Oxygen Conditions. Water Re-search, 121, 72-85.
https://doi.org/10.1016/j.watres.2017.05.029
[6]  朱晓君, 周增炎, 高廷耀. 低氧活性污泥法脱氮除磷工艺生产性研究[J]. 中国给水排水, 1997, 19(S1): 11-14.
[7]  Guo, J., Zhang, L., Chen, W., Ma, F., Liu, H. and Tian, Y. (2013) The Regulation and Control Strategies of a Sequencing Batch Reactor for Simultaneous Nitrification and Denitrification at Different Temperatures. Biore-source Technology, 133, 59-67.
https://doi.org/10.1016/j.biortech.2013.01.026
[8]  Bernet, N., Dangcong, P., Delgenes, J.-P. and Moletta, R. (2001) Nitrification at Low Oxygen Concentration in Biofilm Reactor. Journal of Environmental Engineering, 127, 266-271.
https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(266)
[9]  Kucera, J. (2015) Reverse Osmosis: Industrial Processes and Applications. 2nd Edition, John Wiley & Sons, Inc., Hoboken, 3-40.
https://doi.org/10.1002/9781119145776
[10]  Gamal Khedr, M. (2013) Radioactive Contamination of Groundwater, Special Aspects and Advantages of Removal by Reverse Osmosis and Nanofil-tration. Desalination, 321, 47-54.
https://doi.org/10.1016/j.desal.2013.01.013
[11]  Azizian, S. (2004) Kinetic Models of Sorption: A Theoretical Analysis. Journal of Colloid and Interface Science, 276, 47-52.
https://doi.org/10.1016/j.jcis.2004.03.048
[12]  Coskun, T., Debik, E. and Demir, N. (2010) Treatment of Olive Mill Wastewaters by Nanofiltration and Reverse Osmosis Membranes. Desalination, 259, 65-70.
https://doi.org/10.1016/j.desal.2010.04.034
[13]  Goosena, M.F.A., Sablani, S.S., Al-Maskari, S.S., Al-Belushi, R.H. and Wilf, M. (2002) Effect of Feed Temperature on Permeate Flux and Mass Transfer Coefficient in Spiral-Wound Reverse Osmosis Systems. Desalination, 144, 367-372.
https://doi.org/10.1016/S0011-9164(02)00345-4
[14]  Winfield, B.A. (1979) A Study of the Factors Affecting the Rate of Fouling of Reverse Osmosis Membranes Treating Secondary Sewage Effluents. Water Research, 13, 565-569.
https://doi.org/10.1016/0043-1354(79)90002-2
[15]  Wang, X.J., Xia, S.Q., Chen, L., Zhao, J.F., Renault, N.J. and Chovelon, J.M. (2006) Nutrients Removal from Municipal Wastewater by Chemical Precipitation in a Moving Bed Biofilm Reactor. Process Bio-chemistry, 41, 824-828.
https://doi.org/10.1016/j.procbio.2005.10.015
[16]  方辉, 朱伟青, 陈静霞, 等. 膜技术在木薯淀粉废水深度处理中应用的中试研究[J]. 安徽化工, 2018, 44(6): 57-59.
[17]  Bonmat??, A. and Flotats, X. (2003) Air Stripping of Ammonia from Pig Slurry: Characterisation and Feasibility as a Pre- or Post-Treatment to Mesophilic Anaerobic Digestion. Waste Management, 23, 261-272.
https://doi.org/10.1016/S0956-053X(02)00144-7
[18]  Provolo, G., Perazzolo, F., Mattachini, G. and Finzi, A. (2017) Nitrogen Removal from Digested Slurries Using a Simplified Ammonia Stripping Technique. Waste Management, 69, 154-161.
https://doi.org/10.1016/j.wasman.2017.07.047
[19]  Hidalgo, D., Corona, F., Martin-Marroquin, J.M., Alamo, J.D. and Alicia, A. (2015) Resource Recovery from Anaerobic Digestate: Struvite Crystallisation versus Ammonia Stripping. Desalination and Water Treatment, 57, 2626-2632.
https://doi.org/10.1080/19443994.2014.1001794
[20]  Sarraco, G. and Genon, G. (1994) High Temperature Ammonia Stripping and Recovery from Process Liquid Wastes. Journal of Hazardous Materials, 37, 191-206.
https://doi.org/10.1016/0304-3894(94)85048-8
[21]  Viotti, P. and Gavasci, R. (2015) Scaling of Ammonia Stripping Towers in the Treatment of Groundwater Polluted by Municipal Solid Waste Landfill Leachate: Study of the Causes of Scaling and Its Effects on Stripping Performance. Revista Ambiente & água, 10, 241-252.
https://doi.org/10.4136/ambi-agua.1567
[22]  Griffin, A.E. and Chamberlin, N.S. (1941) Relation of Ammonia-Nitrogen to Break-Point Chlorination. American Journal of Public Health, 31, 803-808.
https://doi.org/10.2105/AJPH.31.8.803
[23]  张文琦. 中高浓度氨氮废水处理方法的比较研究[D]: [硕士学位论文]. 湖南大学,2018.
[24]  陈星宇, 马鑫铭, 史明, 等. 折点氯化法除钨冶炼厂氨氮废水研究[J]. 中国钨业, 2019, 34(1): 45-49+69.
[25]  Dong, Y., Yuan, H., Zhang, R. and Zhu, N. (2019) Removal of Ammonia Nitrogen from Water: A Review. American Society of Agricultural and Biological Engineers, 62, 1767-1778.
https://doi.org/10.13031/trans.13671
[26]  Widiastuti, N., Wu, H., Ang, H.M. and Zhang, D. (2011) Removal of Ammonium from Greywater Using Natural Zeolite. Desalination, 277, 15-23.
https://doi.org/10.1016/j.desal.2011.03.030
[27]  Martinez-Huitle, C.A. and Ferro, S. (2006) Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes. Chemical Society Reviews, 35, 1324-1340.
https://doi.org/10.1039/B517632H
[28]  Deng, Y. (2009) Advanced Oxidation Processes (AOPs) for Reduction of Organic Pol-lutants in Landfill Leachate: A Review. International Journal of Environment and Waste Management, 4, 366-384.
https://doi.org/10.1504/IJEWM.2009.027402
[29]  Zhang, Y. and Zhou, M. (2019) A Critical Review of the Application of Che-lating Agents to Enable Fenton and Fenton-Like Reactions at High pH Values. Journal of Hazardous Materials, 362, 436-450.
https://doi.org/10.1016/j.jhazmat.2018.09.035
[30]  Rajasekhar, B., Venkateshwaran, U., Durairaj, N., Divyapriya, G., Nambi, I. and Joseph, A. (2020) Comprehensive Treatment of Urban Wastewaters Using Electrochemical Advanced Oxidation Process. Journal of Environmental Management, 266, 469-482.
https://doi.org/10.1016/j.jenvman.2020.110469
[31]  Dükkanci, M., Vinatoru, M. and Mason, T.J. (2014) The Sonochemical Decolourisation of Textile Azo Dye Orange II: Effects of Fenton Type Reagents and UV Light. Ultrasonics Sonochemistry, 21, 846-853.
https://doi.org/10.1016/j.ultsonch.2013.08.020
[32]  Pani, N., Tejani, V., Anantha-Singh, T.S. and Kandya, A. (2020) Simultane-ous Removal of COD and Ammoniacal Nitrogen from Dye Intermediate Manufacturing Industrial Wastewater Using Fenton Oxidation Method. Applied Water Science, 10, Article No. 66.
https://doi.org/10.1007/s13201-020-1151-1
[33]  Lin, S.H. and Chang, C.C. (2000) Treatment of Landfill Leachate by Combined Electro-Fenton Oxidation and Sequencing Batch Reactor Method. Water Research, 34, 4243-4249.
https://doi.org/10.1016/S0043-1354(00)00185-8
[34]  Deng, Y. and Englehardt, J.D. (2006) Treatment of Landfill Leachate by the Fenton Process. Water Research, 40, 3683-3694.
https://doi.org/10.1016/j.watres.2006.08.009
[35]  李进松, 万东锦. 电化学技术处理氨氮废水的研究进展[J]. 绿色科技, 2021, 23(10): 119-121+125.
https://doi.org/10.16663/j.cnki.lskj.2021.10.042
[36]  张文琦. 中高浓度氨氮废水处理方法的比较研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2018.
[37]  敬员, 余中山, 程燕. 离子交换法处理废水中的氨氮[J]. 上海化工, 2013, 38(5): 1-4.
[38]  Crini, G. and Lichtfouse, E. (2019) Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environmental Chemistry Letters, 17, 145-155.
https://doi.org/10.1007/s10311-018-0785-9
[39]  Chiou, C.T. (2002) Fundamentals of the Adsorption The-ory. In: Partition and Adsorption of Organic Contaminants in Environmental Systems, John Wiley & Sons, Inc., Hoboken, 39-52.
https://doi.org/10.1002/0471264326.ch4
[40]  Zhu, C.-Y., Wang, J.-F., Li, Q.-S., Wang, L.-L., Tang, G.-H., Cui, B.-S. and Bai, J. (2021) Integration of CW-MFC and Anaerobic Granular Sludge to Explore the Intensified Ammonification-Nitrification-Denitrification Processes for Nitrogen Removal. Chemosphere, 278, Article ID: 130428.
https://doi.org/10.1016/j.chemosphere.2021.130428
[41]  Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D.-J. and Tay, J.H. (2013) Adsorption Mechanisms of High-Levels of Ammonium onto Natural and NaCl-Modified Zeolites. Separation and Purification Technology, 103, 15-20.
https://doi.org/10.1016/j.seppur.2012.10.005
[42]  Weatherley, L.R. and Miladinovic, N.D. (2004) Comparison of the Ion Exchange Uptake of Ammonium Ion Onto New Zealand Clinoptilolite and Mordenite. Water Research, 38, 4305-4312.
https://doi.org/10.1016/j.watres.2004.08.026
[43]  李俊生, 郭小瑞, 徐嘉伦, 谷芳, 夏至, 左金龙. 生物炭吸附法处理氨氮废水的研究进展[J]. 应用化工, 2023, 52(4): 1264-1269+1275.
https://doi.org/10.16581/j.cnki.issn1671-3206.20230320.002
[44]  Pochana, K. and Keller, J. (1999) Study of Factors Affecting Simultaneous Nitrification and Denitrification (SND). Water Science & Technology, 39, 61-68.
https://doi.org/10.2166/wst.1999.0262
[45]  马锋锋, 赵保卫, 念斌. 玉米秸秆生物炭对水中氨氮的吸附特性[J]. 兰州交通大学学报, 2015, 34(1): 125-131+135.
[46]  Quan, X., Huang, K., Li, M., Lan, M. and Li, B. (2018) Nitrogen Removal Performance of Municipal Reverse Osmosis Concentrate with Low C/N Ratio by Membrane-Aerated Biofilm Reactor. Frontiers of Environmental Science & Engineering, 12, Article No. 5.
https://doi.org/10.1007/s11783-018-1047-6
[47]  Nagaoka, H. (1999) Nitrogen Remov-al by Submerged Membrane Separation Activated Sludge Process. Water Science & Technology, 39, 107-114.
https://doi.org/10.2166/wst.1999.0397
[48]  Reeves, T.G. (1972) Nitrogen Removal: A Literature Review. Journal of the Water Pollution Control Federation, 44, 1895-1908.
[49]  Zhao, Q., Han, H., Hou, B., Zhuang, H., Jia, S. and Fang, F. (2014) Nitrogen Removal from Coal Gasification Wastewater by Activated Carbon Technologies Combined with Short-Cut Nitrogen Removal Process. Journal of Environmental Sciences, 26, 2231-2239.
https://doi.org/10.1016/j.jes.2014.09.006
[50]  谢莱, 杨敏, 杨恩喆, 刘志华, 耿欣, 陈宏. 生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征[J/OL]. 生物工程学报: 1-14.
https://doi.org/10.13345/j.cjb.220887, 2023-05-14.
[51]  Leakovi?, S., Mijatovi?, I., Cerjan-Stefanovi?, ?. and Hod?i?, E. (2000) Nitrogen Removal from Fertilizer Wastewater by Ion Exchange. Water Research, 34, 185-190.
https://doi.org/10.1016/S0043-1354(99)00122-0
[52]  Yan, Y., Gao, J. and Wu, J. (2013) Application of Chemical Precipitation in Treating Ammonia Nitrogen from Excess Sludge Liquor. Advanced Materials Research, 634-638, 204-208.
https://doi.org/10.4028/www.scientific.net/AMR.634-638.204
[53]  Karge, H.G. and Weitkamp, J. (2008) Adsorption and Diffu-sion. In: Science and Technology, Molecular Sieves, Vol. 7, Springer, Berlin, 4-5.
https://doi.org/10.1007/978-3-540-73966-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133