|
基于Au@BiOBr/MWNTs的光电化学传感器超灵敏检测过氧化氢
|
Abstract:
目的:本研究通过水热法合成金纳米粒子(Au NPs)和溴氧化铋(BiOBr),采用共价改性法对多壁碳纳米管(MWNTs)进行氧化处理,制备Au@BiOBr/MWNTs复合材料,从而对过氧化氢进行光电化学检测。在可见光照射下,Au@BiOBr/MWNTs检测过氧化氢时有明显的光电流响应,主要的原因是,Au NPs会产生局域表面等离子效应(LSPR)以及BiOBr产生光生电子–空穴对,能够吸附溶液中的H2O2到电极表面并对其进行氧化,增强光电流。MWNTs具有优异的导电性能,能够促进电子转移,有效抑制电子–空穴的复合。该光电传感器检测过氧化氢时的浓度范围5~60 μmol/L,检出限为1.7 μmol/L,表明复合材料对过氧化氢有较好的检测效果。该Au@BiOBr/MWNTs光电化学传感器具有稳定性好、灵敏度高等优点,对过氧化氢的检测具有重要的意义,期待其在监测细胞内活性氧(ROS)水平方面具有广阔的应用前景。
Purpose: In this study, Au nanoparticles (Au NPs) and bismuth bromide (BiOBr) were synthesized by hydrothermal method and multiwalled carbon nanotubes (MWNTs) were oxidized by covalent modification method to prepare Au@BiOBr/MWNTs composites, which were used for photoelectrochemical detection of hydrogen peroxide. Under visible light irradiation, Au@BiOBr/MWNTs have a significant photocurrent response when detecting hydrogen peroxide, mainly because Au NPs produce localized surface plasmon effects (LSPR) and BiOBr produces photogenerated electron-hole pairs, which can absorb H2O2 in solution to the electrode surface and oxidize H2O2, increasing the photocurrent. MWNTs have excellent electrical conductivity, which can promote electron transfer and effectively inhibit electron-hole recombination. The photoelectric sensor detects hydrogen peroxide in the concentration range of 5~60 μmol/L with a detection limit of 1.7 μmol/L, indicating that the composite material has a good detection effect on hydrogen peroxide. The photoelectrochemical sensor has the advantages of good stability and high sensitivity, which is of great significance to the detection of hydrogen peroxide, and it is expected to have promising applications in monitoring intracellular reactive oxygen species (ROS) levels.
[1] | Kakeshpour, T., Metaferia, B. and Zarer, N. (2022) Quantitative Detection of Hydrogen Peroxide in Rain, Air, Exhaled Breath, and Biological Fluids by NMR Spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 119, e2121542119. https://doi.org/10.1073/pnas.2121542119 |
[2] | Pravda, J. (2020) Hydrogen Peroxide and Disease: Towards a Unified System of Pathogenesis and Therapeutics. Molecular Medicine, 26, Article No. 41. https://doi.org/10.1186/s10020-020-00165-3 |
[3] | Marquitan, M., Clausmeyer, J., Actis, P., et al. (2016) Intracellular Hydrogen Peroxide Detection with Functionalised Nanoelectrodes. ChemElectroChem, 3, 2125-2129. https://doi.org/10.1002/celc.201600390 |
[4] | Wang, S., Zhang, Y., Wang, T., et al. (2022) A Near-Infrared Fluorescent Probe Based on the Hemicyanine Skeleton for the Detection of Hydrogen Peroxide in Vivo. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 266, Article ID: 120435. https://doi.org/10.1016/j.saa.2021.120435 |
[5] | Michael, P.L., Ubaldo, E., et al. (2011) Hydrogen Peroxide Fuels Aging, Inflammation, Cancer Metabolism and Metastasis. Cell Cycle, 10, 2440-2449. https://doi.org/10.4161/cc.10.15.16870 |
[6] | Zheng, D.J., Yang, Y.S. and Zhu, H.L. (2019) Recent Progress in the Development of Small-Molecule Fluorescent Probes for the Detection of Hydrogen Peroxide. TrAC Trends in Analytical Chemistry, 118, 625-651.
https://doi.org/10.1016/j.trac.2019.06.031 |
[7] | Cho, I.W., Son, S.U., Yang, M.H. and Choi, J. (2020) Preparation of Microporous MoS2@Carbon Nanospheres for the Electrochemical Detection of Hydrogen Peroxide. Journal of Electroanalytical Chemistry, 876, Article ID: 114739.
https://doi.org/10.1016/j.jelechem.2020.114739 |
[8] | Zhang, M., Chen, M., Liu, Y.X., Wang, Y. and Tang, J.G. (2019) Catalase-Inorganic Hybrid Microflowers Modified Glassy Carbon Electrode for Amperometric Detection of Hydrogen Peroxide. Materials Letters, 243, 9-12.
https://doi.org/10.1016/j.matlet.2019.01.157 |
[9] | Kang, Y., Shang, N., Lan, X., et al. (2022) Preparation of Pt Nanoparticles Embedded on Ordered Mesoporous Carbon Hybrids for Sensitive Detection of Acetaminophen. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128620. https://doi.org/10.1016/j.colsurfa.2022.128620 |
[10] | An, S., Shang, N., Chen, B., et al. (2021) Co-Ni Layered Double Hydroxides Wrapped on Leaf-Shaped Copper Oxide Hybrids for Non-Enzymatic Detection of Glucose. Journal of Colloid and Interface Science, 592, 205-214.
https://doi.org/10.1016/j.jcis.2021.02.046 |
[11] | Guo, X.J., Zhen, M., Liu, H.J. and Liu, L. (2015) BiOBr-BiOI Microsphere Assembled with Atom-Thick Ultrathin Nanosheets and Its High Photocatalytic Activity. RSC Advances, 5, 24777-247782.
https://doi.org/10.1039/C5RA01086A |
[12] | Luo, Y., Zhang, C., Zheng, B.B., Geng, X. and Debliquy, M. (2017) Hydrogen Sensors Based on Noble Metal Doped Metal-Oxide Semiconductor: A Review. International Journal of Hydrogen Energy, 42, 20386-20397.
https://doi.org/10.1016/j.ijhydene.2017.06.066 |
[13] | Mehdi, K., Saeed, A., Can, H., Saeb, S.P. and Liu, J.F. (2019) Use of Alcea rosea Leaf Extract for Biomimetic Synthesis of Gold Nanoparticles with Innate Free Radical Scavenging and Catalytic Activities. Journal of Molecular Structure, 1179, 749-755. https://doi.org/10.1016/j.molstruc.2018.11.079 |
[14] | Peter, P., Hammed, A.S., Romen, H.P., Zhong, Z.Y. and Lopez-Sanchez, J.A. (2016) Anisotropic Gold Nanoparticles: Preparation and Applications in Catalysis. Chinese Journal of Catalysis, 37, 1619-1650.
https://doi.org/10.1016/S1872-2067(16)62475-0 |
[15] | Oh, S.Y., Heo, N.S., Bajpai, V.K., et al. (2019) Development of a Cuvette-Based LSPR Sensor Chip Using a Plasmonically Active Transparent Strip. Frontiers in Bioengineering and Biotechnology, 7, Article 299.
https://doi.org/10.3389/fbioe.2019.00299 |
[16] | Ladani, R.B., Ravindran, A.R., Wu, S., et al. (2016) Multi-Scale Toughening of Fibre Composites Using Carbon Nanofibres and z-Pins. Composites Science & Technology, 131, 98-109.
https://doi.org/10.1016/j.compscitech.2016.06.005 |
[17] | Galassi, T.V., Aatman-Passig, M., Yaari, Z., et al. (2019) Long-Term in vivo Biocompatibility of Single-Walled Carbon Nanotubes. PLOS ONE, 15, e0226791 https://doi.org/10.1371/journal.pone.0226791 |
[18] | Lo, A.Y., Yu, N., Huang, S.J., et al. (2011) Fabrication of CNTs with Controlled Diameters and Their Applications as Electrocatalyst Supports for DMFC. Diamond & Related Materials, 20, 343-350.
https://doi.org/10.1016/j.diamond.2011.01.002 |
[19] | Koutsuoukis, A., Belessi, V. and Georgakilas, V. (2021) Solid Phase Functionalization of MWNTs: An Eco-Friendly Approach for Carbon-Based Conductive Inks. Green Chemistry, 23, 5442-5448. https://doi.org/10.1039/D1GC01043C |
[20] | Cao, Z.S., Qiu, L., Yang Y.Z., Chen, Y.K. and Liu, X.G. (2014) The Effects of Surface Modifications of Multiwalled Carbon Nanotubes on Their Dispersibility in Different Solvents and Poly (Ether Ether Ketone). Journal of Materials Research, 29, 2625-2633. https://doi.org/10.1557/jmr.2014.284 |
[21] | Roy, D., Tiwari, N., Mukhopadhyay, K. and Saxena, A.K. (2014) The Effect of a Doubly Modified Carbon Nanotube Derivative on the Microstructure of Epoxy Resin. Polymer, 55, 583-593.
https://doi.org/10.1016/j.polymer.2013.12.012 |
[22] | Ebrahim-Habib, M.B., Zeinali, M. and Soheili, M. (2011) Effect of Crude and Carboxyl-Functionalized Carbon Nanotubes on Protein—Protein Interaction. Clinical Biochemistry, 44, S355-S356.
https://doi.org/10.1016/j.clinbiochem.2011.08.895 |
[23] | Yuwen, L., Xu, F., Xue. B., et al. (2014) General Synthesis of Noble Metal (Au, Ag, Pd, Pt) Nanocrystal Modified MoS2 Nanosheets and the Enhanced Catalytic Activity of Pd-MoS2 for Methanol Oxidation. Nanoscale, 6, 5762-5769.
https://doi.org/10.1039/C3NR06084E |
[24] | Liu, D., Chen, D., Li, N., et al. (2020) Surface Engineering of g-C3N4 by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angewandte Chemie International Edition, 59, 4519-4524.
https://doi.org/10.1002/anie.201914949 |
[25] | Malikov, E.Y., Aoktay O.H., Muradov, M.B., Eyvazova, G.M., et al. (2017) Facile Synthesis Route of Graphene-Like Structures from Multiwall Carbon Nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures, 25, 540-544.
https://doi.org/10.1080/1536383X.2017.1360868 |
[26] | Ghorannevis, Z., Akbarnehad, E., Aghazadeh, B. and Ghoranneviss, M. (2017) Decoration of MWNTs by CdS Nanoparticles Using Magnetron Sputtering Method. Silicon, 10, 709-714. https://doi.org/10.1007/s12633-016-9516-7 |
[27] | Chang, J.L., Tsung, W., et al. (2018) Controlled Hydrothermal Synthesis of Bismuth Oxychloride/Bismuth Oxybromide/Bismuth Oxyiodide Composites Exhibiting Visible-Light Photocatalytic Degradation of 2-Hydroxybenzoic Acid and Crystal Violet. Journal of Colloid and Interface Science, 526, 322-336. https://doi.org/10.1016/j.jcis.2018.04.097 |
[28] | Xing, R., Yang, H., Li, S., et al. (2017) A Sensitive and Reliable Rutin Electrochemical Sensor Based on Palladium Phthalocyanine-MWCNTs-Nafion Nanocomposite. Journal of Solid State Electrochemistry, 21, 1219-1228.
https://doi.org/10.1007/s10008-016-3447-5 |
[29] | Wang, J., Lu, C., Chen, T., et al. (2019) Simply Synthesized Nitrogen-Doped Graphene Quantum Dot (NGQD)-Modified Electrode for the Ultrasensitive Photoelectrochemical Detection of Dopamine. Nanophotonics, 9, 3831-3839.
https://doi.org/10.1515/nanoph-2019-0418 |