全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Performance Improvement of CIGS Solar Cell: A Simulation Approach by SCAPS-1D

DOI: 10.4236/epe.2023.158015, PP. 291-306

Keywords: Thin-Flim, CIGS-Based Solar Cell, Non-Toxic Solar Cell, SCAPS-1D, Numerical Simulation, Renewable Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thin-film solar cells possess the distinct advantage of being cost-effective and relatively simple to manufacture. Nevertheless, it is of utmost importance to enhance their overall performance. In this research work, copper indium gallium selenide (CIGS)-based ultra-thin solar cell (SC) configuration (Ag/ZnO/ZnSe/CIGS/Si/Ni) has been designed and examined using SCAPS-1D. The numerical calculations revealed that this new design resulted in a substantial improvement in SC performance. This study explores the utilization of two absorber layers, CIGS and Si, both with a total of 2 μm thickness, to enhance device performance while reducing material costs, observing an increase in key SC parameters as the Si absorber layer thickness is increased, reaching a maximum efficiency of 29.13% when CIGS and Si thicknesses are set at 0.4 μm and 1.6 μm, respectively with doping absorber doping density of 1014 cm-3. Furthermore, we analyze the impact of variation in absorber and buffer layer thickness, as well as doping concentration, surface recombination velocity (SRV), electron affinity, series-shunt resistance, and temperature, on optimized CIGS SC parameters such as short-circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE). The findings yielded by the investigation offer significant elucidation regarding the fabrication of economically viable and highly efficient non-hazardous CIGS ultra-thin SC.

References

[1]  Chen, J. (2017) An Empirical Study on China’s Energy Supply-and-Demand Model Considering Carbon Emission Peak Constraints in 2030. Engineering, 3, 512-517.
https://doi.org/10.1016/J.ENG.2017.04.019
[2]  Powalla, M., Paetel, S., Hariskos, D., Wuerz, R., Kessler, F., Lechner, P., et al. (2017) Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu (In, Ga) Se2. Engineering, 3, 445-451.
https://doi.org/10.1016/J.ENG.2017.04.015
[3]  Sara, B., Baya, Z. and Zineb, B. (2018) Investigation of Cu (In, Ga) Se2 Solar Cell Performance with Non-Cadmium Buffer Layer Using TCAD-SILVACO. Materials Science-Poland, 36, 514-519.
https://doi.org/10.2478/msp-2018-0054
[4]  Dabbabi, S., Nasr, T.B. and Kamoun-Turki, N. (2017) Parameters Optimization of CIGS Solar Cell Using 2D Physical Modeling. Results in Physics, 7, 4020-4024.
https://doi.org/10.1016/j.rinp.2017.06.057
[5]  Heriche, H., Rouabah, Z. and Bouarissa, N. (2017) New Ultra-Thin CIGS Structure Solar Cells Using SCAPS Simulation Program. International Journal of Hydrogen Energy, 42, 9524-9532.
https://doi.org/10.1016/j.ijhydene.2017.02.099
[6]  Boukortt, N.E.I., Patanè, S., Adouane, M. and AlHammadi, R. (2021) Numerical Optimization of Ultrathin CIGS Solar Cells with Rear Surface Passivation. Solar Energy, 220, 590-597.
https://doi.org/10.1016/j.solener.2021.03.078
[7]  Ait Abdelkadir, A., Oublal, E., Sahal, M., Soucase, B.M., Kotri, A., Hangoure, M., et al. (2023) Numerical Simulation and Optimization of n-Al-ZnO/n-CdS/p-CIGS/p-Si/p-MoOx/Mo Tandem Solar Cell. Silicon, 15, 2125-2135.
https://doi.org/10.1007/s12633-022-02144-1
[8]  Benbouzid, Z., Benstaali, W., Rahal, W.L., Hassini, N., Benzidane, M.R. and Boukortt, A. (2023) Efficiency Enhancement by BSF Optimization on Cu (In1-x, Gax) Se2 Solar Cells with Tin (IV) Sulfide Buffer Layer. Journal of Electronic Materials, 52, 4575-4586.
https://doi.org/10.1007/s11664-023-10416-8
[9]  Gharibshahian, I., Orouji, A.A. and Sharbati, S. (2022) Effectiveness of Band Discontinuities between CIGS Absorber and Copper-Based Hole Transport Layer in Limiting Recombination at the Back Contact. Materials Today Communications, 33, Article ID: 104220.
https://doi.org/10.1016/j.mtcomm.2022.104220
[10]  Barman, B. and Kalita, P.K. (2021) Influence of Back Surface Field Layer on Enhancing the Efficiency of CIGS Solar Cell. Solar Energy, 216, 329-337.
https://doi.org/10.1016/j.solener.2021.01.032
[11]  Mohottige, R.N. and Vithanage, S.P.K. (2021) Numerical Simulation of a New Device Architecture for CIGS-Based Thin-Film Solar Cells Using 1D-SCAPS Simulator. Journal of Photochemistry and Photobiology A: Chemistry, 407, Article ID: 113079.
https://doi.org/10.1016/j.jphotochem.2020.113079
[12]  Ghamsari-Yazdel, F. and Fattah, A. (2022) Performance Enhancement of CIGS Solar Cells Using ITO as Buffer Layer. Micro and Nanostructures, 168, Article ID: 207289.
https://doi.org/10.1016/j.micrna.2022.207289
[13]  Hedayati, M., Olyaee, S. and Ghorashi, S.M.B. (2020) The Effect of Adsorbent Layer Thickness and Gallium Concentration on the Efficiency of a Dual-Junction Copper Indium Gallium Diselenide Solar Cell. Journal of Electronic Materials, 49, 1454-1461.
https://doi.org/10.1007/s11664-019-07824-0
[14]  Boukortt, N.E.I., Patanè, S. and Abdulraheem, Y.M. (2020) Numerical Investigation of CIGS Thin-Film Solar Cells. Solar Energy, 204, 440-447.
https://doi.org/10.1016/j.solener.2020.05.021
[15]  Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., et al. (2017) Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nature Energy, 2, Article No. 17032.
https://doi.org/10.1038/nenergy.2017.32
[16]  Kazmi, S.A.A., Khan, A.D., Khan, A.D., Rauf, A., Farooq, W., Noman, M., et al. (2020) Efficient Materials for Thin-Film CdTe Solar Cell Based on Back Surface Field and Distributed Bragg Reflector. Applied Physics A, 126, Article No. 46.
https://doi.org/10.1007/s00339-019-3221-5
[17]  Haghighi, M., Minbashi, M., Taghavinia, N., Kim, D.H., Mahdavi, S.M. and Kordbacheh, A.A. (2018) A Modeling Study on Utilizing SnS2 as the Buffer Layer of CZT (S, Se) Solar Cells. Solar Energy, 167, 165-171.
https://doi.org/10.1016/j.solener.2018.04.010
[18]  Pettersson, J., Torndahl, T., Platzer-Bjorkman, C., Hultqvist, A. and Edoff, M. (2013) The Influence of Absorber Thickness on Cu (In, Ga) Se Solar Cells with Different Buffer Layers. IEEE Journal of Photovoltaics, 3, 1376-1382.
https://doi.org/10.1109/JPHOTOV.2013.2276030
[19]  Asma, C., Boumdienne, B. and Meriem, C. (2016) Numerical Analysis of the Effect Graded Zn (O, S) on the Performance of the Graded CIGS Based Solar Cells by SCAPS-1D. International Journal of Nanoelectronics and Materials, 9, 103-110.
[20]  Movla, H., Abdi, E. and Salami, D. (2013) Simulation Analysis of the CIGS Based Thin Film Solar Cells. Optik, 124, 5871-5873.
https://doi.org/10.1016/j.ijleo.2013.04.064
[21]  Vermang, B., Watjen, J.T., Fjallstrom, V., Rostvall, F., Edoff, M., Kotipalli, R., et al. (2014) Employing Si Solar Cell Technology to Increase Efficiency of Ultra-Thin Cu (In, Ga) Se2 Solar Cells. Progress in Photovoltaics: Research and Applications, 22, 1023-1029.
https://doi.org/10.1002/pip.2527
[22]  Garris, R.L., Johnston, S., Li, J.V., Guthrey, H.L., Ramanathan, K. and Mansfield, L.M. (2018) Electrical Characterization and Comparison of CIGS Solar Cells Made with Different Structures and Fabrication Techniques. Solar Energy Materials and Solar Cells, 174, 77-83.
https://doi.org/10.1016/j.solmat.2017.08.027
[23]  Chadel, M., Chadel, A., Benyoucef, B. and Aillerie, M. (2023) Enhancement in Efficiency of CIGS Solar Cell by Using a p-Si BSF Layer. Energies, 16, Article 2956.
https://doi.org/10.3390/en16072956
[24]  Ahamed, E.I., Bhowmik, S., Matin, M.A. and Amin, N. (2017) Highly Efficient Ultra-Thin Cu(In, Ga)Se2 Solar Cell with Tin Selenide BSF. 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, 16-18 February 2017, 428-432.
https://doi.org/10.1109/ECACE.2017.7912942
[25]  Maurya, K.K. and Singh, V.N. (2022) Sb2Se3/CZTS Dual Absorber Layer Based Solar Cell with 36.32% Efficiency: A Numerical Simulation. Journal of Science: Advanced Materials and Devices, 7, Article ID: 100445.
https://doi.org/10.1016/j.jsamd.2022.100445
[26]  Burgelman, M. and Marlein, J. (2008) Analysis of Graded Band Gap Solar Cells with SCAPS. 23rd European Photovoltaic Solar Energy Conference, Valencia, 1-5 September 2008, 2151-2155.
[27]  Alam, U. and Sahu, A. (2020) Improved Performance of Ultra-Thin CIGS Structure with ZnS Buffer Layers. 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, 14-15 February 2020, 534-537.
https://doi.org/10.1109/ICE348803.2020.9122990
[28]  Hossain, J. (2021) Design and Simulation of Double-Heterojunction Solar Cells Based on Si and GaAs Wafers. Journal of Physics Communications, 5, Article ID: 085008.
https://doi.org/10.1088/2399-6528/ac1bc0
[29]  Kumar, A. and Thakur, A.D. (2018) Role of Contact Work Function, Back Surface Field, and Conduction Band Offset in Cu2ZnSnS4 Solar Cell. Japanese Journal of Applied Physics, 57, Article ID: 08RC05.
https://doi.org/10.7567/JJAP.57.08RC05
[30]  Deo, M. and Chauhan, R.K. (2023) Tweaking the Performance of Thin Film CIGS Solar Cell Using InP as Buffer Layer. Optik, 273, Article ID: 170357.
https://doi.org/10.1016/j.ijleo.2022.170357
[31]  Tobbeche, S., Kalache, S., Elbar, M., Kateb, M.N. and Serdouk, M.R. (2019) Improvement of the CIGS Solar Cell Performance: Structure Based on a ZnS buFfer Layer. Optical and Quantum Electronics, 51, Article No. 284.
https://doi.org/10.1007/s11082-019-2000-z
[32]  Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A. and Dabou, R. (2015) Simulation of High Efficiency CIGS Solar Cells with SCAPS-1D Software. Energy Procedia, 74, 736-744.
https://doi.org/10.1016/j.egypro.2015.07.809
[33]  Ali, K., Khan, H.M., Anmol, M., Ahmad, I.A., Farooq, W.A., Al-Asbahi, B.A., et al. (2020) Effect of Surface Recombination Velocity (SRV) on the Efficiency of Silicon Solar Cell. Journal of Optoelectronics and Advanced Materials, 22, 251-255.
[34]  Khatun, M.M., Sunny, A. and Al Ahmed, S.R. (2021) Numerical Investigation on Performance Improvement of WS2 Thin-Film Solar Cell with Copper Iodide as Hole Transport Layer. Solar Energy, 224, 956-965.
https://doi.org/10.1016/j.solener.2021.06.062
[35]  Ahmed, S.R.A., Sunny, A. and Rahman, S. (2021) Performance Enhancement of Sb2Se3 Solar Cell Using a Back Surface Field Layer: A Numerical Simulation Approach. Solar Energy Materials and Solar Cells, 221, Article ID: 110919.
https://doi.org/10.1016/j.solmat.2020.110919
[36]  Patel, A.K., Mishra, R. and Soni, S.K. (2022) Performance Enhancement of CIGS Solar Cell with Two Dimensional MoS2 Hole Transport Layer. Micro and Nanostructures, 165, Article ID: 207195.
https://doi.org/10.1016/j.micrna.2022.207195
[37]  Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Benedicte, T.T. and Marie, N.J. (2019) Highlighting Some Layers Properties in Performances Optimization of CIGSe Based Solar Cells: Case of Cu (In, Ga) Se-ZnS. Journal of King Saud University-Science, 31, 1404-1413.
https://doi.org/10.1016/j.jksus.2018.03.026
[38]  Boukortt, N.E.I., Patanè, S., Hadri, B. and Crupi, G. (2023) Graded Bandgap Ultrathin CIGS Solar Cells. Electronics, 12, Article 393.
https://doi.org/10.3390/electronics12020393

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133