全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Defects at the Buffer Layer CdS/Absorber CIGS Interface on CIGS Solar Cell Performance

DOI: 10.4236/aces.2023.134020, PP. 289-300

Keywords: Numerical Simulation, CdS/CIGS Interface, Interface Defects, Conduction Band Offset (CBO), Surface Defect Layer (SDL)

Full-Text   Cite this paper   Add to My Lib

Abstract:

This scientific paper presents a study investigating the effects of defects at the CdS/CIGS and CdS/SDL interfaces on the performance of CIGS solar cells. The objective of this study is to analyze the influence of defects at the interface between the CdS buffer layer and the CIGS absorber, as well as the surface defect layer (SDL), on CIGS solar cell performance. The study explores three key aspects: the impact of the conduction band offset (CBO) at the CdS/CIGS interface, the effects of interface defects and defect density on performance, and the combined influence of CBO and defect density at the CdS/ SDL and SDL/CIGS interfaces. For interface defects not exceeding 1013 cm-2, we obtained a good efficiency of 22.9% when -0.1 eV < CBO < 0.1 eV. By analyzing the quality of CdS/SDL and SDL/CIGS junctions, it appears that defects at the SDL/CIGS interface have very little impact on the performances of the CIGS solar cell. By optimizing the electrical parameters of the CdS/SDL interface defects, we achieved a conversion efficiency of 23.1% when -0.05 eV < CBO < 0.05 eV.

References

[1]  Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T. and Sugimoto, H. (2019) Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell with Record Efficiency of 23.35%. IEEE Journal of Photovoltaics, 9, 1863-1867.
https://doi.org/10.1109/JPHOTOV.2019.2937218
[2]  Schmid, D., Ruckh, M. and Schock, H. (1996) A Comprehensive Characterization of the Interfaces in Mo/CIS/CdS/ZnO Solar Cell Structures. Solar Energy Materials and Solar Cells, 41-42, 281-294.
https://doi.org/10.1016/0927-0248(95)00107-7
[3]  Nakada, T. and Kunioka, A. (1999) Direct Evidence of Cd Diffusion into Cu(In,Ga)Se2 Thin Films during Chemical-Bath Deposition Process of CdS Films. Applied Physics Letters, 74, 2444-2446.
https://doi.org/10.1063/1.123875
[4]  Buffière, M. (2011) Synthèse et caractérisation de couches minces de Zn(O,S) pour application au sein des cellules solaires à base de CuInGaSe2. Ph.D. Thesis, Université de Nantes, Nantes.
[5]  Jackson, P., Hariskos, D., Wuerz, R., Wischmann, W. and Powalla, M. (2005) Compositional Investigation of Potassium Doped Cu(In,Ga)Se2 Solar Cells with Efficiencies up to 20.8 %. Physica Status Solidi (RRL), 8, 219-222.
https://doi.org/10.1002/pssr.201409040
[6]  Okano, Y., Nakada, T. and Kunioka, A. (1998) XPS Analysis of CdS/CuInSe2 Heterojunction. Solar Energy Materials and Solar Cells, 50, 105-110.
https://doi.org/10.1016/S0927-0248(97)00129-3
[7]  Heske, C.D., Eich, R., Fink, E., Umbach, T., Van Buuren, C., Bostedt, L., et al. (1999) Observation of Intermixing at the Buried CdS/CIGSe Thin Film Solar Cell. Applied Physics Letters, 74, 1451-1453.
https://doi.org/10.1063/1.123578
[8]  Romero, M.J., Jones, M., AbuShama, J., Yan, Y., Al-Jassim, M.M. and Noufi, R. (2003) Layer Band Gap Widening in Cu(In,Ga)Se2 Thin Films. Applied Physics Letters, 83, 4731-4733.
https://doi.org/10.1063/1.1631396
[9]  Niemegeers, A., Burgelman, M., Herberholz, R., Rau, U., Hariskos, D. and Schock, H.-W. (1998) Model for Electronic Transport in Cu(In,Ga)Se2 Solar Cells. Applied Physics Letter, 6, 407-421.
https://doi.org/10.1002/(SICI)1099-159X(199811/12)6:6<407::AID-PIP230>3.0.CO;2-U
[10]  Niemergeers, A. and Burgelman, M. (1997) Effects of the Au/CdTe Back Contact on IV and CV Characteristics of Au/CdTe/CdS/TCO Solar Cells. Journal of Applied Physics, 6, 2881-2886.
https://doi.org/10.1063/1.363946
[11]  Pettersson, J., Edo, M. and Platzer-Björkman, C. (2012) Electrical Modeling of Cu(In,Ga)Se2 Cells with ALD-Zn(1-x)MgxO Buffer Layers. Journal of Applied Physics, 111, Article ID: 014509.
https://doi.org/10.1063/1.3672813
[12]  Liao, D. and Rockett, A. (2003) Cu Depletion at the Cu(In,Ga)Se2 Surface. Applied Physics Letters, 82, 2829-2831.
https://doi.org/10.1063/1.1570516
[13]  Gloeckler, M. and Sites, J. (2005) Band-Gap Grading in CuInGaSE2 Solar Cells. Journal of Physics and Chemistry of Solids, 66, 1891-1894.
https://doi.org/10.1016/j.jpcs.2005.09.087
[14]  Oubda, D., Kebre, M.B., Zougmoré, F., Njomo, D. and Ouattara, F. (2015) Numerical Simulation of Cu(In,Ga)Se2 Solar Cells Performances. Journal of Energy and Power Engineering, 55, 1047-1055.
[15]  Ouédraogo, S., Zougmoré, F. and Ndjaka, J. (2013) Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D. International Journal of Photoenergy, 2013, Article ID: 421076.
https://doi.org/10.1155/2013/421076
[16]  Minemoto, T., Matsui, T., Takakura, H., Hamakawa, T.Y., Negami, Y., Hashimoto, T. and Kitagawa, M. (2001) Theoretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation. Solar Energy Materials and Solar Cells, 67, 83-88.
https://doi.org/10.1016/S0927-0248(00)00266-X
[17]  Gloeckler, M. and Sites, J. (2005) Potential of Submicrometer Thickness CuInGaSe2 Solar Cells. Journal of Applied Physics, 98, Article ID: 103703.
https://doi.org/10.1063/1.2128054
[18]  Bunning, J.M., Samantilleke, A., et al. (2005) Effects of Multi-Defects at Metal/Semi-conductor Interfaces on Electrical Properties and Their Influence on Stability and Lifetime of Thin Film Solar Cells. Solar Energy Materials and Solar Cells, 86, 373-384.
https://doi.org/10.1016/j.solmat.2004.08.009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133