全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Terrestrial Temperature, Sea Levels and Ice Area Links with Solar Activity and Solar Orbital Motion

DOI: 10.4236/ns.2023.159018, PP. 233-255

Keywords: Sun: Magnetic Field, Sun: Solar Activity, Sun: Inertial Motion, Earth: Temperature, Earth: Sea Level, Earth: Ice Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper explores the links between terrestrial temperature, sea levels and ice areas in both hemispheres with solar activity indices expressed through averaged sunspot numbers together with the summary curve of eigenvectors of the solar background magnetic field (SBMF) and with changes of Sun-Earth distances caused by solar inertial motion resulting from the gravitation of large planets in the solar system. Using the wavelet analysis of the GLB and HadCRUTS datasets two periods: 21.4 and 36 years in GLB, set and the period of about 19.6 years in the HadCRUTS are discovered. The 21.4-year period is associated with variations in solar activity defined by the summary curve of the largest eigenvectors of the SBMF. A dominant 21.4-year period is also reported in the variations of the sea level, which is linked with the period of 21.4 years detected in the GLB temperature and the summary curve of the SBMF variations. The wavelet analysis of ice and snow areas shows that in the Southern hemisphere, it does not show any links to solar activity periods while in the Northern hemisphere, the ice area reveals a period of 10.7 years equal to a usual solar activity cycle. The TSI in March-August of every year is found to grow with every year following closely the temperature curve, because the Sun moves closer to the Earth orbit owing to gravitation of large planets (solar inertial motion, SIM), while the variations of solar radiation during a whole year have more steady distribution without a sharp TSI increase during the last two centuries. The additional TSI contribution caused by SIM is likely to secure the additional energy input and exchange between the ocean and atmosphere.

References

[1]  Akasofu, S.-I. (2010) On the Recovery from the Little Ice Age. Natural Science, 2, 1211-1224.
https://doi.org/10.4236/ns.2010.211149
[2]  Hansen, J., Ruedy, R., Sato, M. and Lo, K. (2010) Global Surface Temperature Change. Reviews of Geophysics, 48, RG4004.
https://doi.org/10.1029/2010RG000345
[3]  J.C.P.S.B. IPCC (2023) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
[4]  Yim, S.Y., Wang, B. and Wu, X. (2013) A Comparison of Regional Monsoon Variability Using Monsoon Indices. Climate Dynamics, 43, 1423-1437.
https://doi.org/10.1007/s00382-013-1956-9
[5]  Trenberth, K.E. and Hoar, T.J. (1997) El Niño and Climate Change. Geophysical Research Letters, 24, 3057-3060.
https://doi.org/10.1029/97GL03092
[6]  Ashok, K., Guan, Z. and Yamagata, T. (2001) Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and ENSO. Geophysics Research Letters, 28, 4499-4502.
https://doi.org/10.1029/2001GL013294
[7]  Ashok, K. and Yamagata, T. (2009) Climate Change: The El Niño with a Difference. Nature, 461, 481-484.
https://doi.org/10.1038/461481a
[8]  Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B.P. and Jin, F.-F. (2009) El Niño in a Changing Climate. Nature, 462, 674.
https://doi.org/10.1038/nature08546
[9]  Roy, I., Asikainen, T., Maliniemi, V. and Mursula, K. (2016) Comparing the Influence of Sunspot Activity and Geomagnetic Activity on Winter Surface Climate. Journal of Atmospheric and Solar-Terrestrial Physics, 149, 167-179.
https://doi.org/10.1016/j.jastp.2016.04.009
[10]  McPhaden, M.J. and Zhang, D. (2004) Pacific Ocean Circulation Rebounds. Geophysics Research Letters, 31, L18301.
https://doi.org/10.1029/2004GL020727
[11]  Vecchi, G.A. and Soden, B.J. (2007) Effect of Remote Sea Surface Temperature Change on Tropical Cyclone Potential Intensity. Nature, 450, 1066-1070.
https://doi.org/10.1038/nature06423
[12]  Minobe, S. (2000) Spatio-Temporal Structure of the Pentadecadal Variability over the North Pacific. Progress in Oceanography, 47, 381-408.
https://doi.org/10.1016/S0079-6611(00)00042-2
[13]  Bond, N.A., Overland, J.E., Spillane, M. and Stabeno, P. (2003) Recent Shifts in the State of the North Pacific. Geophysical Research Letters, 30, 2183.
https://doi.org/10.1029/2003GL018597
[14]  Simms, A.R., Bentley, M.J., Simkins, L.M., Zurbuchen, J., Reynolds, L.C., DeWitt, R. and Thomas, E.R. (2021) Evidence for a Little Ice Age Glacial Advance within the Antarctic Peninsula Examples from Glacially-Overrun Raised Beaches. Quaternary Science Reviews, 271, Article ID: 107195.
https://doi.org/10.1016/j.quascirev.2021.107195
[15]  Moore, J.C., Grinsted, A., Zwinger, T. and Jevrejeva, S. (2013) Semiempirical and Process-Based Global Sea Level Projections. Reviews of Geophysics, 51, 484-522.
https://doi.org/10.1002/rog.20015
[16]  Fyke, J., Sergienko, O., Löfverström, M., Price, S. and Lenaerts, J.T.M. (2018) An Overview of Interactions and Feedbacks between Ice Sheets and the Earth System. Reviews of Geophysics, 56, 361-408.
https://doi.org/10.1029/2018RG000600
[17]  Turner, J., Orr, A., Gudmundsson, G.H., Jenkins, A., Bingham, R.G., Hillenbrand, C.-D. and Bracegirdle, T.J. (2017) Atmosphere-Ocean-Ice Interactions in the Amundsen Sea Embayment, West Antarctica. Reviews of Geophysics, 55, 235-276.
https://doi.org/10.1002/2016RG000532
[18]  Pritchard, H.D., Arthern, R.J., Vaughan, D.G. and Edwards, L.A. (2009) Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets. Nature, 461, 971-975.
https://doi.org/10.1038/nature08471
[19]  Rignot, E., Bamber, J.L., van den Broeke, M.R., Davis, C., Li, Y., van de Berg, W.J. and van Meijgaard, E. (2008) Recent Antarctic Ice Mass Loss from Radar Interferometry and Regional Climate Modelling. Nature Geoscience, 1, 106-110.
https://doi.org/10.1038/ngeo102
[20]  Joughin, I., Smith, B.E. and Holland, D.M. (2010) Sensitivity of 21st Century Sea Level to Ocean-Induced Thinning of Pine Island Glacier, Antarctica. Geophysics Research Letters, 37, L20502.
https://doi.org/10.1029/2010GL044819
[21]  Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet, F., Zwinger, T., Payne, A.J. and Le Brocq, A.M. (2014) Retreat of Pine Island Glacier Controlled by Marine Ice-Sheet Instability. Nature Climate Change, 4, 117-121.
https://doi.org/10.1038/nclimate2094
[22]  Park, J.W., Gourmelen, N., Shepherd, A., Kim, S.W., Vaughan, D.G. and Wingham, D.J. (2013) Sustained Retreat of the Pine Island Glacier. Geophysics Research Letters, 40, 2137-2142.
https://doi.org/10.1002/grl.50379
[23]  Wingham, D.J., Wallis, D.W. and Shepherd, A. (2009) Spatial and Temporal Evolution of Pine Island Glacier Thinning, 1995-2006. Geophysics Research Letters, 36, L17501.
https://doi.org/10.1029/2009GL039126
[24]  Cazenave, A., Dieng, H.-B., Meyssignac, B., von Schuckmann, K., Decharme, B. and Berthier, E. (2014) The Rate of Sea-Level Rise. Nature Climate Change, 4, 358-361.
https://doi.org/10.1038/nclimate2159
[25]  Rahmstorf, S. (2007) A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science, 315, 368-370.
https://doi.org/10.1126/science.1135456
[26]  Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington, B.D., Masters, D. and Mitchum, G.T. (2018) Climate-Change-Driven Accelerated Sea-Level Rise Detected in the Altimeter Era. Proceedings of the National Academy of Science, 115, 2022-2025.
https://doi.org/10.1073/pnas.1717312115
[27]  Storch, H.V., Zorita, E. and González-Rouco, J.F. (2008) Relationship between Global Mean Sea-Level and Global Mean Temperature in a Climate Simulation of the Past Millennium. Ocean Dynamics, 58, 227-236.
https://doi.org/10.1007/s10236-008-0142-9
[28]  Grinsted, A., Moore, J.C. and Jevrejeva, S. (2010) Reconstructing Sea Level from Paleo and Projected Temperatures 200 to 2100 AD. Climate Dynamics, 34, 461-472.
https://doi.org/10.1007/s00382-008-0507-2
[29]  Vermeer, M. and Rahmstorf, S. (2009) From the Cover: Global Sea Level Linked to Global Temperature. Proceedings of the National Academy of Science, 106, 21527-21532.
https://doi.org/10.1073/pnas.0907765106
[30]  Sannino, G., Carillo, A., Iacono, R., Napolitano, E., Palma, M., Pisacane, G. and Struglia, M. (2022) Modelling Present and Future Climate in the Mediterranean Sea: A Focus on Sea-Level Change. Climate Dynamics, 59, 357-391.
https://doi.org/10.1007/s00382-021-06132-w
[31]  Ashok, K., Behera, S.K., Rao, S.A., Weng, H. and Yamagata, T. (2007) El Niño Modoki and Its Possible Teleconnection. Journal of Geophysical Research (Oceans), 112, C11007.
https://doi.org/10.1029/2006JC003798
[32]  Chang, Y.-P., Chen, M.-T., Yokoyama, Y., Matsuzaki, H., Thompson, W.G., Kao, S.-J. and Kawahata, H. (2009) Monsoon Hydrography and Productivity Changes in the East China Sea during the Past 100,000 Years: Okinawa Trough Evidence (MD012404). Paleoceanography, 24, PA3208.
https://doi.org/10.1029/2007PA001577
[33]  Hao, T., Liu, X., Ogg, J., Liang, Z., Xiang, R., Zhang, X., Zhang, D., Zhang, C., Liu, Q. and Li, X. (2017) Intensified Episodes of East Asian Winter Monsoon during the Middle through Late Holocene Driven by North Atlantic Cooling Events: High-Resolution Lignin Records from the South Yellow Sea, China. Earth and Planetary Science Letters, 479, 144-155.
https://doi.org/10.1029/2007PA001577
[34]  Roy, I. and Haigh, J.D. (2010) Solar Cycle Signals in Sea Level Pressure and Sea Surface Temperature. Atmospheric Chemistry & Physics, 10, 3147-3153.
https://doi.org/10.5194/acp-10-3147-2010
[35]  Christoforou, P. and Hameed, S. (1997) Solar Cycle and the Pacific “Centers of Action”. Geophysics Research Letters, 24, 293-296.
https://doi.org/10.1029/97GL00017
[36]  van Loon, H. and Meehl, G.A. (2008) The Response in the Pacific to the Sun’s Decadal Peaks and Contrasts to Cold Events in the Southern Oscillation. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1046-1055.
https://doi.org/10.1016/j.jastp.2008.01.009
[37]  Oman, L., Robock, A. and Stenchikov, G. (2003) Comparing the Climatic Impact from Low Latitude versus High Latitude Volcanic Eruptions. AGU Fall Meeting Abstracts, San Francisco, 8-12 December 2003, A41D-0725.
[38]  Emile-Geay, J., Seager, R., Cane, M.A., Cook, E.R. and Haug, G.H. (2008) Volcanoes and ENSO over the Past Millennium. Journal of Climate, 21, 3134-3148.
https://doi.org/10.1175/2007JCLI1884.1
[39]  White, W.B., Lean, J., Cayan, D.R. and Dettinger, M.D. (1997) Response of Global Upper Ocean Temperature to Changing Solar Irradiance. Journal of Geophysics Research, 102, 3255-3266.
https://doi.org/10.1029/96JC03549
[40]  Zharkova, V.V., Shepherd, S.J., Popova, E. and Zharkov, S.I. (2015) Heartbeat of the Sun from Principal Component Analysis and Prediction of Solar Activity on a Millenium Timescale. Scientific Reports, 5, Article No. 15689.
https://doi.org/10.1038/srep15689
[41]  Shepherd, S.J., Zharkov, S.I., and Zharkova, V.V. (2014) Prediction of Solar Activity from Solar Background Magnetic Field Variations in Cycles 21-23. The Astrophysical Journal, 795, 46.
https://doi.org/10.1088/0004-637X/795/1/46
[42]  Zharkova, V.V. and Shepherd, S.J. (2022) Eigen Vectors of Solar Magnetic Field in Cycles 21-24 and Their Links to Solar Activity Indices. Monthly Notices of the Royal Astronomical Society, 512, 5085-5099.
https://doi.org/10.1093/mnras/stac781
[43]  Zharkova, V.V., Vasilieva, I., Popova, E. and Shepherd, S.J. (2023) Comparison of Solar Activity Proxies: Eigenvectors versus Averaged Sunspot Numbers. Monthly Notices of the Royal Astronomical Society, 521, 6247-6265.
https://doi.org/10.1093/mnras/stad1001
[44]  Eddy, J.A. (1976) The Maunder Minimum. Science, 192, 1189-1202.
https://doi.org/10.1126/science.192.4245.1189
[45]  Zharkova, V. (2020) Modern Grand Solar Minimum Will Lead to Terrestrial Cooling. Temperature, 7, 217-222.
https://doi.org/10.1080/23328940.2020.1796243
[46]  Lean, J., Beer, J. and Bradley, R. (1995) Reconstruction of Solar Irradiance since 1610: Implications for Climate Change. Geophysical Research Letters, 22, 3195-3198.
https://doi.org/10.1029/95GL03093
[47]  Easterbrook, D.J. (2016) Evidence-Based Climate Science. Elsevier, Amsterdam.
[48]  Parker, D.E., Jones, P.D., Folland, C.K. and Bevan, A. (1994) Interdecadal Changes of Surface Temperature since the Late Nineteenth Century. Journal of Geophysical Research: Atmospheres, 99, 14373-14399.
https://doi.org/10.1029/94JD00548
[49]  Lockwood, M., Stamper, R. and Wild, M.N. (1999) A Doubling of the Sun’s Coronal Magnetic Field during the Past 100 Years. Nature, 399, 437-439.
https://doi.org/10.1038/20867
[50]  Zharkova, V.V., Shepherd, S.J., Zharkov, S.I. and Popova, E. (2019) RETRACTED ARTICLE: Oscillations of the Baseline of Solar Magnetic Field and Solar Irradiance on a Millennial Timescale. Scientific Reports, 9, Article No. 9197.
https://doi.org/10.1038/s41598-019-45584-3
[51]  Zharkova, V. (2021) Millennial Oscillations of Solar Irradiance and Magnetic Field in 600-2600. In: Bevelacqua, J., Ed., Solar System Planets and Exoplanets, IntechOpen, London, 1-34.
https://doi.org/10.5772/intechopen.96450
[52]  Zharkova, V.V., Vasilieva, I., Shepherd, S. and Popova, E. (2023) Periodicities of Solar Activity and Solar Radiation Derived from Observations and Their Links with the Terrestrial Environment. arXiv:2301.07480.
[53]  Zharkova, V.V., Vasilieva, I., Shepherd, S. and Popova, E. (2023) Periodicities of Solar Activity and Solar Radiation Derived from Observations and Their Links with the Terrestrial Environment. Natural Science, 15, 111-147.
https://doi.org/10.4236/ns.2023.153010
[54]  Steinhilber, F., Beer, J. and Fröhlich, C. (2009) Total Solar Irradiance during the Holocene. Geophysical Research Letters, 36, L19704.
https://doi.org/10.1029/2009GL040142
[55]  Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., et al. (2012) 9,400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings. Proceedings of the National Academy of Science, 109, 5967-5971.
https://doi.org/10.1073/pnas.1118965109
[56]  Salby, M.L., Titova, E.A. and Deschamps, L. (2012) Changes of the Antarctic Ozone Hole: Controlling Mechanisms, Seasonal Predictability, and Evolution. Journal of Geophysical Research (Atmospheres), 117, D10111.
https://doi.org/10.1029/2011JD016285
[57]  Roy, I. (2018) Addressing on Abrupt Global Warming, Warming Trend Slowdown and Related Features in Recent Decades. Frontiers in Earth Science, 6, Article No. 136.
https://doi.org/10.3389/feart.2018.00136
[58]  Koutsoyiannis, D., Onof, C., Kundzewicz, Z. and Christofides, A. (2023) On Hens, Eggs, Temperatures and CO2: Causal Links in Earthõs Atmosphere. Sci, 5, Article No. 35.
https://doi.org/10.3390/sci5030035
[59]  Lenssen, N.J.L., Schmidt, G.A., Hansen, J.E., Menne, M.J., Persin, A., Ruedy, R. and Zyss, D. (2019) Improvements in the Gistemp Uncertainty Model. Journal of Geophysical Research: Atmospheres, 124, 6307-6326.
https://doi.org/10.1029/2018JD029522
[60]  Church, J. and White, N. (2011) Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, 32, 585-602.
https://doi.org/10.1007/s10712-011-9119-1
[61]  Church, J.A. and White, N.J. (2006) A 20th Century Acceleration in Global Sea-Level Rise. Geophysical Research Letters, 33, L01602.
https://doi.org/10.1029/2005GL024826
[62]  Holgate, S. (2004) Evidence for Enhanced Coastal Sea Level Rise during the 1990s. Geophysical Research Letters, 31, L07305.
https://doi.org/10.1029/2004GL019626
[63]  Cazenave, A. and Nerem, R. (2004) Present-Day Sea Level Change: Observations and Causes. Reviews of Geophysics, 42, RG3001.
https://doi.org/10.1029/2003RG000139
[64]  Leuliette, E.W., Nerem, R.S. and Mitchum, G.T. (2004) Calibration of Topex/Poseidon and Jason Altimeter Data to Construct a Continuous Record of Mean Sea Level Change. Marine Geodesy, 27, 79-94.
https://doi.org/10.1080/01490410490465193
[65]  Fox-Kemper, B., Hewitt, H., Xiao, C., Aethalgeirsdottir, G., Drijfhout, S., Edwards, T., et al. (2021) Ocean, Cryosphere and Sea Level Chang. Cambridge University Press, Cambridge.
[66]  Clark, J.A. (1977) Future Sea-Level Changes Due to West Antarctic Ice Sheet Fluctuations. Nature, 269, 206-209.
https://doi.org/10.1038/269206a0
[67]  Gomez, N., Mitrovica, J.X., Tamisiea, M.E. and Clark, P.U. (2010) A New Projection of Sea Level Change in Response to Collapse of Marine Sectors of the Antarctic Ice Sheet. Geophysical Journal International, 180, 623-634.
https://doi.org/10.1111/j.1365-246X.2009.04419.x
[68]  Torrence, C. and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulletin of American Meteorological Society, 79, 61-78.
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
[69]  Vasilieva, I. and Zharkova, V. (2023) Terrestrial Volcanic Eruptions and Their Association with Solar Activity. Global Journal of Science Frontier Research, 23, 22.
[70]  Velasco Herrera, V.M., Soon, W. and Legates, D.R. (2021) Does Machine Learning Reconstruct Missing Sunspots and Forecast a New Solar Minimum? Advances in Space Research, 68, 1485-1501.
https://doi.org/10.1016/j.asr.2021.03.023
[71]  Le Mouël, J.L., Lopes, F. and Courtillot, V. (2020) Characteristic Time Scales of Decadal to Centennial Changes in Global Surface Temperatures Over the Past 150 Years. Earth and Space Science, 7, e00671.
https://doi.org/10.1029/2019EA000671
[72]  Zharkova, V.V., Shepherd, S.J. and Zharkov, S.I. (2012) Principal Component Analysis of Background and Sunspot Magnetic Field Variations during Solar Cycles 21-23. Monthly Notices of the Royal Astronomical Society, 424, 2943-2953.
https://doi.org/10.1111/j.1365-2966.2012.21436.x
[73]  Schmidt, M. and Lipson, H. (2009) Distilling Free-Form Natural Laws from Experimental Data. Science, 324, 81-85.
https://doi.org/10.1126/science.1165893
[74]  Clette, F., Svalgaard, L., Vaquero, J.M. and Cliver, E.W. (2014) Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle. Space Science Reviews, 186, 35-103.
https://doi.org/10.1007/s11214-014-0074-2
[75]  Kitiashvili, I.N. (2020) Application of Synoptic Magnetograms to Global Solar Activity Forecast. The Astrophysical Journal, 890, 36.
https://doi.org/10.3847/1538-4357/ab64e7
[76]  Obridko, V.N., Sokoloff, D.D., Pipin, V.V., Shibalvaa, A.S. and Livshits, I.M. (2021) Zonal Harmonics of Solar Magnetic Field for Solar Cycle Forecast. Monthly Notices of the Royal Astronomical Society, 504, 4990-5000.
https://doi.org/10.1093/mnras/stab1062
[77]  Charvátová, I. (2000) Can Origin of the 2400-Year Cycle of Solar Activity Be Caused by Solar Inertial Motion? Annales Geophysicae, 18, 399-405.
https://doi.org/10.1007/s00585-000-0399-x
[78]  Paluš, M., Kurths, J., Schwarz, U., Seehafer, N., Novotná, D. and Charvátová, I. (2007) The Solar Activity Cycle Is Weakly Synchronized with the Solar Inertial Motion. Physics Letters A, 365, 421-428.
https://doi.org/10.1016/j.physleta.2007.01.039
[79]  Perminov, A.S. and Kuznetsov, E.D. (2018) Orbital Evolution of the Sun-Jupiter-Saturn-Uranus-Neptune Four-Planet System on Long-Time Scales. Solar System Research, 52, 241-259.
https://doi.org/10.1134/S0038094618010070
[80]  Connolly, R., Soon, W., Connolly, M., Baliunas, S., Berglund, J., Butler, C.J., et al. (2023) Challenges in the Detection and Attribution of Northern Hemisphere Surface Temperature Trends since 1850. Research in Astronomy and Astrophysics, 23, Article ID: 105015.
https://doi.org/10.1088/1674-4527/acf18e
[81]  Soon, W., Connolly, R., Connolly, M., Akasofu, S.-I., Baliunas, S., Berglund, J., Bianchini, A., et al. (2023) The Detection and Attribution of Northern Hemisphere Land Surface Warming (1850-2018) in Terms of Human and Natural Factors: Challenges of Inadequate Data. Climate, 11, Article No. 179.
https://doi.org/10.3390/cli11090179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133