In this work we present the results of our study on the physical and mechanical properties of titanium in volume. The work consisted in determining its physical and mechanical properties under different crystallographic structures (HCP, FCC, BCC and SC) using the Modified Embedded Atom Method (MEAM) and the MEAM potential of titanium. We used the LAMMPS calculation code, based on classical molecular dynamics, to determine the most stable structure of titanium, which is the hexagonal compact structure (HCP) with crystal parameters a = 2.952 ? and c = 4.821 ? and a cohesion energy of -4.87 eV. This structure is seconded by the cubic centred structure (BCC) with a lattice parameter a = 3.274 ? and a cohesive energy of -4.84 eV. It was shown that titanium can crystallise into a third structure which is the face-centred cubic (FCC) structure with a lattice parameter a = 4.143 ? and a cohesive energy of -4.82 eV. The results obtained in this study were compared with the theoretical results and showed considerable agreement.
References
[1]
Lutjering, G. and Williams, J.C. (2003) Titanium. Springer, Berlin. https://doi.org/10.1007/978-3-540-71398-2
[2]
Van Arkel, A.E. and de Boer, J.H. (1925) Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall. Zeitschrift für anorganische und allgemeine Chemie, 148, 345-350. https://doi.org/10.1002/zaac.19251480133
[3]
Leyens, C. and Peters, M. (2003) Titanium and Titanium Alloys, Fundamentals and applications. Wiley, New York. https://doi.org/10.1002/3527602119
[4]
Combres, Y. (1999) Properties of Titanium and Its Alloys. Techniques de l’ingénieur M557.
[5]
Nsongo, T. (1987) Study of the Structure and Adhesion of Titanium Nitride Thin Films Prepared by Sputtering. https://www.theses.fr/1987AIX30051
[6]
Grosso, S. (2017) Architectural Coatings of Ti, TiN and TiOx Grown by Flow Sputtering on Stainless Steel Wires. https://www.theses.fr/2017GREAI083
[7]
Eboungabeka, A.D., Trigo, E.R.M.E. and Nsongo, T. (2021) Reactivity of Titanium Dental Implants in Salivary Environment in the Presence of Foods Consumed in the Republic of the Congo. Advances in Materials Physics and Chemistry, 11, 93-99. https://doi.org/10.4236/ampc.2021.115009
[8]
Kim, Y.M., Lee, B.J. and Baskes, M.I. (2006) Modified Embedded-Atom Method Interatomic Potentials for Ti and Zr. Physical Review B, 74, Article ID: 014101. https://doi.org/10.1103/PhysRevB.74.014101
[9]
Wang, J.H., Lu, Y., Zhang, X.L. and Shao, X.H. (2018) The Elastic Behaviors and Theoretical Tensile Strength of γ-TiAl Alloy from the First Principles Calculations. Intermetallics, 101, 1-7. https://doi.org/10.1016/j.intermet.2018.07.001
[10]
Mouhat, F. and Coudert, F.X. (2014) Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Physical Review B, 90, Article ID: 224104. https://doi.org/10.1103/PhysRevB.90.224104
[11]
Tian, J., Zhao, Y., Wang, B., Hou, H. and Zhang, Y. (2018) The Structural, Mechanical and Thermodynamic Properties of Ti-B Compounds under the Influence of Temperature and Pressure: First-Principles Study. Materials Chemistry and Physics, 209, 200-207. https://doi.org/10.1016/j.matchemphys.2018.01.067
[12]
Xiao, B., Feng, J., Zhou, C.T., Jiang, Y.H. and Zhou, R. (2011) Mechanical Properties and Chemical Bonding Characteristics of Cr7C3 Type Multicomponent Carbides. Journal of Applied Physics, 109, Article ID: 083521. https://doi.org/10.1063/1.3532038
[13]
Hu, H., Wu, X., Wang, R., Jia, Z., Li, W. and Liu, Q. (2016) Structural Stability, Mechanical Properties and Stacking Fault Energies of TiAl3 Alloyed with Zn, Cu, Ag: First-Principles Study. Journal of Alloys and Compounds, 666, 185-196. https://doi.org/10.1016/j.jallcom.2016.01.106
[14]
Qi, Y.Y., Mu, Y., Cheng, Y. and Ji, G.F. (2015) Pressure Effect on Electronic, Elastic and Optical Properties of Eu: CaF2 Crystal: A First-Principles Study. Philosophical Magazine, 95, 2974-2989. https://doi.org/10.1080/14786435.2015.1082664
[15]
Li, X.-H., Cui, H.-L. and Zhang, R.-Z. (2017) Theoretical Study on the Structural, Mechanical, Electronic Properties and QTAIM of CrB4 as a Hard Material. Chinese Physics B, 26, Article 096201. https://doi.org/10.1088/1674-1056/26/9/096201
[16]
Sinko, G.V. and Smirnow, N.A. (2002) Ab initio Calculations of Elastic Constants and Thermodynamic Properties of bcc, fcc, and hcp Al Crystals under Pressure. Journal of Physics: Condensed Matter, 14, 6989-7005. https://doi.org/10.1088/0953-8984/14/29/301
[17]
Ikehata, H., Nagasako, N., Furuta, T., Fukumoto, A., Miwa, K. and Saito, T. (2004) First-Principles Calculations for Development of Low Elastic Modulus Ti Alloys. Physical Review B, 70, Article ID: 174113. https://doi.org/10.1103/PhysRevB.70.174113
[18]
Simmons, G. and Wang, H. (1971) Single Crystal Elastic Constants and Calculated Aggregate Properties, A Handbook. MIT Press, Cambridge.
[19]
Voigt, W. (1889) Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 274, 573-587. https://doi.org/10.1002/andp.18892741206
[20]
Hill, R. (1963) Elastic Properties of Reinforced Solids: Some Theoretical Principles. Journal of the Mechanics and Physics of Solids, 11, 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
[21]
Gao, F.M. and Gao, L.H. (2010) Microscopic Models of Hardness. Journal of Superhard Materials, 32, 148-166. https://doi.org/10.3103/S1063457610030020
[22]
Chen, X.Q., Niu, H., Li, D. and Li, Y. (2011) Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics, 19, 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026
[23]
Yousef, E.S., El-Adawy, A. and El-Kheshkhany, N. (2006) Effect of Rare Earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the Acoustic Properties of Glass Belonging to Bismuth-Borate System. Solid State Communications, 139, 108-113. https://doi.org/10.1016/j.ssc.2006.05.022
[24]
Ledbetter, H. and Migliori, A. (2006) A General Elastic-Anisotropy Measure. Journal of Applied Physics, 100, Article ID: 063516. https://doi.org/10.1063/1.2338835
[25]
Ranganathan, S.I. and Ostoja-Starzewski, M. (2008) Universal Elastic Anisotropy Index. Physical Review Letters, 101, Article ID: 055504. https://doi.org/10.1103/PhysRevLett.101.055504
[26]
Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J. and Meng, J. (2007) Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles. Physical Review B, 76, Article ID: 054115. https://doi.org/10.1103/PhysRevB.76.059904
[27]
Reuss, A. (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49-58. (In German) https://doi.org/10.1002/zamm.19290090104
[28]
Voigt, W. (1928) Lehrbuch der Kristallphysik. Taubner, Leipzig.
[29]
Li, H., Chen, Y., Wang, H., Wang, H., Li, Y., Harran, I., et al. (2017) First-Principles Study of Mechanical and Thermodynamic Properties of Ti-Ga Intermetallic Compounds. Journal of Alloys and Compounds, 700, 208-214. https://doi.org/10.1016/j.jallcom.2017.01.052
[30]
Jiang, D.Y., Ouyang, C.Y. and Liu, S.Q. (2016) Mechanical Properties of W-Ti Alloys from First-Principles Calculations. Fusion Engineering and Design, 106, 34-39. https://doi.org/10.1016/j.fusengdes.2016.03.028