全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂网络下银行–能源企业系统风险传染研究
The Study of Systemic Risk Contagion in Bank-Energy Firms under Complex Networks

DOI: 10.12677/MSE.2023.131005, PP. 53-60

Keywords: 复杂网络,风险传染,债务等级模型,银行–能源企业系统,共股东关联关系
Complex Networks
, Risk Contagion, Debt Rank Model, Bank-Energy Firms System, Co-Shareholder Affiliation

Full-Text   Cite this paper   Add to My Lib

Abstract:

实体经济企业与金融系统在信贷、贸易等方面存在的关联关系为风险提供了传播渠道。同时,在“双碳”政策的影响下,银行和能源企业面临着转型风险,为探究银行–能源企业系统的风险传染机理,守住不发生系统性风险的底线。本文运用复杂网络的方法,将能源企业间的共股东关联关系和银行与能源企业间的信贷关联结合在一起。通过构建银行–能源企业系统的网络和风险传染模型,实证分析了银行–能源企业系统风险的动态演化规律,研究了该系统平均系统性风险的特点。研究发现,能源企业共股东关联关系是风险的主要传播渠道,能源企业系统承担了绝大部分的系统性风险。在研究银行–能源企业系统的风险时,若忽略能源企业共股东关联关系时,会造成风险的严重低估。
The correlation between real economy enterprises and the financial system in terms of credit and trade provides a channel for risk transmission. At the same time, under the influence of the “double carbon” policy, banks and energy enterprises are facing the transition risk. To explore the risk transmission mechanism of the bank-energy enterprise system, and to keep the bottom line of no systemic risk. In this paper, we use the method of complex network to combine the co-share- holder relationship between energy enterprises and the credit linkage between banks and energy enterprises. By constructing a network and risk contagion model of the bank-energy enterprise system, it empirically analyses the dynamic evolution law of the bank-energy enterprise system risk, and studies the characteristics of the average systemic risk of the system. It is found that the energy enterprise co-shareholder affiliation is the main transmission channel of risk, and the energy enterprise system bears most of the systemic risk. When studying the risk of the bank-energy firm system, ignoring the energy firms' co-shareholder affiliation will result in a serious underestimation of the risk.

References

[1]  Gatti, D., Galle Gati, M. and Greenwald, B. (2010) The Financial Accelerator in an Evolving Credit Network. Computational Perspectives in Economics and Finance: Methods, Dynamic Analysis and Policy Modeling, 34, 1627-1650.
[2]  Riccetti, L., Russo, A. and Galle Gati, M. (2013) Leveraged Network-Based Financial Accelerator. Journal of Economic Dynamics and Control, 37, 1626-1640.
https://doi.org/10.1016/j.jedc.2013.02.008
[3]  Ahmad, W., Tiwari, S.R. and Wadhwani, A. (2023) Financial Networks and Systemic Risk Vulnerabilities: A Tale of Indian Banks. Research in International Business and Finance, 65, Article ID: 101962.
https://doi.org/10.1016/j.ribaf.2023.101962
[4]  Silva, T.C., Da Silva, M.A. and Tabak, B.M. (2017) Systemic Risk in Financial Systems: A Feedback Approach. Journal of Economic Behavior & Organization, 144, 97-120.
https://doi.org/10.1016/j.jebo.2017.09.013
[5]  李守伟, 王虎, 刘晓星. 系统性风险: 金融系统与实体经济间反馈效应[J]. 管理科学学报, 2022, 25(11): 25-42.
[6]  沈维萍. 银行气候转型风险的行业关联性影响探究[J]. 金融理论与实践, 2023(5): 93-104.
[7]  Bingler, J.A. and Sennni, C.C. (2022) Taming the Green Swan: A Criteria-Based Analysis to Improve the Understanding of Climate-Related Financial Risk Assessment Tools. Climate Policy, 22, 356-370.
https://doi.org/10.1080/14693062.2022.2032569
[8]  安鹏丽. 基于双层网络的能源上市公司共股东强度对股价波动动态传导研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2022.
[9]  Li, H., An, H. and Huang, J. (2016) The Evolutionary Stability of Shareholders’ Co-Holding Behavior for China’s Listed Energy Companies Based on Associated Maximal Connected Sub-Graphs of Derivative Holding-Based Networks. Applied Energy, 162, 1601-1607.
https://doi.org/10.1016/j.apenergy.2015.04.049
[10]  Liu, Q., Li, H. and Liu, X. (2018) Information Networks in the Stock Market Based on the Distance of the Multi-Attribute Dimensions between Listed Companies. Physica A: Statistical Mechanics and Its Applications, 496, 505-513.
https://doi.org/10.1016/j.physa.2017.12.134
[11]  Zhou, T., Ren, J. and Medo, M. (2007) Bipartite Network Projection and Personal Recommendation. Physical Review E, 76, Article ID: 046115.
https://doi.org/10.1103/PhysRevE.76.046115
[12]  Bardoscia, M., Battistion, S. and Caccioli, F. (2015) DebtRank: A Microscopic Foundation for Shock Propagation. PLOS ONE, 10, e0134888.
https://doi.org/10.1371/journal.pone.0130406
[13]  方意, 王晏如. 系统性金融风险: 理论机制、预警体系与双支柱政策框架[J]. 贵州大学学报(社会科学版), 2023, 41(4): 92-99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133