全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SWAT模型的沙河流域气候变化对径流的影响
The Impact of Climate Change on Runoff in the Shahe River Basin Based on the SWAT Model

DOI: 10.12677/AG.2024.141002, PP. 12-29

Keywords: 气候变化,SWAT模型,沙河流域,径流
Climate Change
, SWAT Model, Shahe River Basin, Runoff

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨气候变化下沙河流域地表径流演变趋势以及其对径流的影响,本文基于1960~2020年沙河流域逐日气象水文数据,采用统计分析法对比分析了流域降水、温度和径流的演变趋势性和突变性,并结合沙河流域1980、1990、2000、2010、2020年五期土地利用数据,建立了多时段沙河流域SWAT (Soil and Water Assessment Tool)模型。根据未来趋势设置不同气候变化情景,分析了沙河流域径流对气候变化的响应。研究结果表明:1) SWAT模型在沙河流域径流模拟中具有较好的适用性,率定期和验证期的相关系数(R2)均在0.6以上,Nash-Sutcliffe纳什效率系数(Ens)均在0.5以上,相对误差(Re)均在±25%以内。2) 过去61年沙河流域温度呈显著上升趋势,降水量下降不明显,而实测径流量呈显著下降趋势。3) 不同气候变化情景下的模拟表明,研究区径流与降水呈正相关,与温度呈负相关,且径流对降水变化的敏感程度高于径流对温度变化的敏感程度。
To explore the evolution trends of surface runoff in the Shahe River Basin under climate change and its impacts, we used daily meteorological and hydrological data from 1960 to 2020 in the Shahe River Basin. We employed a statistical analysis method to compare and analyze the trend and abrupt changes in precipitation, temperature, and runoff in the basin. Additionally, we established a multi-period SWAT (Soil and Water Assessment Tool) model for the Shahe River Basin, considering land use data for five periods in 1980, 1990, 2000, 2010, and 2020. We set different climate change scenarios according to the future trends to analyze the response of runoff in the Shahe River Basin to climate change. The research results indicate: 1) The SWAT model demonstrates good applicability in simulating runoff in the Shahe River Basin, with correlation coefficients (R2) above 0.6 during the calibration and validation periods, Nash-Sutcliffe efficiency coefficients (Ens) above 0.5, and relative errors (Re) within ±25%. 2) Over the past 61 years, the temperature in the Shahe River Basin showed a significant upward trend, with a less pronounced decrease in precipitation, while observed runoff exhibited a significant decreasing trend. 3) Simulations under different climate change scenarios revealed that runoff in the study area is positively correlated with precipitation and negatively correlated with temperature. Runoff is more sensitive to changes in precipitation than to changes in temperature.

References

[1]  Legg, S. (2021) IPCC, 2021: Climate Change 2021—The Physical Science Basis. Interaction, 49, 44-45.
[2]  李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学, 2013, 33(4): 457-464.
[3]  Arnold, J.G., Srinivasan, R., Muttiah, R.S., et al. (1998) Large Area Hydrologic Modeling and Assessment Part I: Model Development. JAWRA Journal of the American Water Resources Association, 34, 73-89.
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
[4]  Arnell, N.W. (1999) Climate Change and Global Water Resources. Global Environmental Change, 9, S31-S49.
https://doi.org/10.1016/S0959-3780(99)00017-5
[5]  夏军, 刘春蓁, 任国玉. 气候变化对我国水资源影响研究面临的机遇与挑战[J]. 地球科学进展, 2011, 26(1): 1-12.
[6]  Beniston, M. (2006) Climatic Change: Implications for the Hydrological Cycle and for Water Management. Springer Science & Business Media, Berlin.
[7]  秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883.
[8]  Lai, G., Wu, D., Zhong, Y., et al. (2012) Progress in Development and Applications of SWAT Model. Journal of Hohai University (Natural Sciences), 40, 243-251.
[9]  Abbaspour, K.C., Yang, J., Maximov, I., et al. (2007) Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. Journal of Hydrology, 333, 413-430.
https://doi.org/10.1016/j.jhydrol.2006.09.014
[10]  Georgakakos, A., Yao, H., Kistenmacher, M., et al. (2012) Value of Adaptive Water Resources Management in Northern California under Climatic Variability and Change: Reservoir Management. Journal of Hydrology, 412, 34-46.
https://doi.org/10.1016/j.jhydrol.2011.04.038
[11]  Christian, R.J., Storm, B. and Clausen, T. (2010) Système Hydrologique Europeén (SHE): Review and Perspectives after 30 Years Development in Distributed Physically-Based Hydrological Modelling. Hydrology Research, 41, 355-377.
https://doi.org/10.2166/nh.2010.009
[12]  Golmohammadi, G., Prasher, S., Madani, A., et al. (2014) Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT. Hydrology, 1, 20-39.
https://doi.org/10.3390/hydrology1010020
[13]  尹振良, 肖洪浪, 邹松兵, 等. 祁连山黑河干流山区水文模拟研究进展[J]. 冰川冻土, 2013, 35(2): 438-446.
[14]  White, E.D., Easton, Z.M., Fuka, D.R., et al. (2011) Development and Application of a Physically Based Landscape Water Balance in the SWAT Model. Hydrological Processes, 25, 915-925.
https://doi.org/10.1002/hyp.7876
[15]  Srinvasan, R., Arnold, J. and Jones, C. (1998) Hydrologic Modelling of the United States with the Soil and Water Assessment Tool. International Journal of Water Resources Development, 14, 315-325.
https://doi.org/10.1080/07900629849231
[16]  Zahabiyoun, B., Goodarz, M., Bavani, A.M., et al. (2013) Assessment of Climate Change Impact on the Gharesou River Basin Using SWAT Hydrological Model. CLEAN—Soil, Air, Water, 41, 601-609.
https://doi.org/10.1002/clen.201100652
[17]  刘晋, 李致家. 黄河河源区分布式水文模拟研究[J]. 人民黄河, 2007, 29(9): 30-32.
[18]  庞靖鹏, 徐宗学, 刘昌明. SWAT模型研究应用进展[J]. 水土保持研究, 2007, 14(3): 31-35.
[19]  李道峰, 田英, 刘昌明. 黄河河源区变化环境下分布式水文模拟[J]. 地理学报, 2004, 59(4): 565-573.
[20]  祁雪姣, 杨颖, 韩传楠, 等. 气候变化对长江源区地表径流的影响[J]. 南京师大学报(自然科学版), 2022, 45(4): 81-90.
[21]  吴安琪, 石朋, 陆美霞, 等. 气候变化对淮河径流及洪峰流量的影响[J]. 三峡大学学报(自然科学版), 2021, 43(1): 13-17.
[22]  陈鑫. 基于SWAT模型的海河典型流域径流变化归因分析[D]: [硕士学位论文]. 泰安: 山东农业大学, 2020.
[23]  Neitsch, S.L., Arnold, J.G., Kiniry, J.R., et al. (2011) Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute, College Station.
[24]  安晨, 方海燕. 基于SWAT模型的妫水河流域径流空间分布特征[J]. 水文, 2021, 41(4): 81-87+47.
[25]  曹灿, 孙瑞, 吴志祥, 等. 基于SWAT模型的南渡江上游流域径流对气候变化的响应[J]. 水土保持研究, 2022, 29(2): 255-264.
[26]  寇丽敏, 刘建卫, 张慧哲, 等. 基于SWAT模型的洮儿河流域气候变化的水文响应[J]. 水电能源科学, 2016, 34(2): 12-16.
[27]  Chang, J., Wang, Y., Istanbulluoglu, E., et al. (2015) Impact of Climate Change and Human Activities on Runoff in the Weihe River Basin, China. Quaternary International, 380, 169-179.
https://doi.org/10.1016/j.quaint.2014.03.048
[28]  Zuo, D., Xu, Z., Peng, D., et al. (2015) Simulating Spatiotemporal Variability of Blue and Green Water Resources Availability with Uncertainty Analysis. Hydrological Processes, 29, 1942-1955.
https://doi.org/10.1002/hyp.10307
[29]  王维, 鞠琴, 王乐扬, 等. 渭河上游流域径流对土地利用变化的时空响应[J]. 水力发电, 2021, 47(9): 41-45+93.
[30]  陈明康. 大理河流域多尺度径流变化归因分析[D]: [硕士学位论文]. 西安: 西安理工大学, 2023.
[31]  汪飞, 洪林, 马田遥, 等. 基于SWAT模型的气候变化条件下诺敏河流域径流变化研究[J]. 水土保持研究, 2023, 30(6): 67-77.
[32]  田小靖, 赵广举, 穆兴民, 等. 水文序列突变点识别方法比较研究[J]. 泥沙研究, 2019, 44(2): 33-40.
[33]  Ye, P.L., Wang, Y., Xu, L.L., Han, L.J. and Li, R. (2021) Climate Change in the Upper Yellow River Basin and Its Impact on Ecological Vegetation and Runoff from 1980 to 2018. Transactions of Atmospheric Sciences, 43, 967-979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133