|
Pure Mathematics 2024
一类集合的 3 因子个数研究
|
Abstract:
本论文研究由任意非 3 因子元素组成的集合 其中D是一无穷整数子集,我们证明了对任意的k≥1,存在无穷多个??1,??2∈A,它们的差??1???2至少有k个 3 因子。 分别讨论了集合A是整数集或有理数集下,利用数学归纳法以及集合之间的包含关系证得了上述结论是成立的。
In this thesis, we study the set consisting of any non-3-factor element where D is an infinite subset of integers.We show that there are infinitely many ??1,??2∈A, and their difference ??1???2 has at least ?? factors of 3 for any k≥1. If A is set of integers or set of rational numbers, the above conclusion is proved by mathematical induction
and the induction relation between sets.
[1] | Mandelbrot, B.B. (1975) Les Objets Fractals: Forme, Hasard et Dimension. Flammarion,
Paris. |
[2] | Matilla, P. (1995) Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability.
In: Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press,
Cambridge. https://doi.org/10.1017/CBO9780511623813 |
[3] | Kigami, J. (2001) Analysis on Fractals. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511470943 |
[4] | Falconer, K. (2004) Fractal Geometry-Mathematical Foundations and Applications. 2nd Edition,
John Wiley, New York. https://doi.org/10.1002/0470013850 |
[5] | Strichartz, R. (2006) Differential Equations on Fractals. Princeton University Press, Princeton
and Oxford. https://doi.org/10.1515/9780691186832 |
[6] | Lund, J.P., Strichartz, R.S. and Vinson, J.P. (1998) Cauchy Transforms of Self-Similar Measures.
Experimental Mathematics, 7, 177-190.
https://doi.org/10.1080/10586458.1998.10504368 |
[7] | Dong, X.H. and Lau, K.S. (2003) Cauchy Transforms of Self-Similar Measures: The Laurent
Coefficients. Journal of Functional Analysis, 202, 67-97.
https://doi.org/10.1016/S0022-1236(02)00069-1 |
[8] | Dong, X.H. and Lau, K.S. (2004) An Integral Related to the Cauchy Transform on the Sierpinski
Gasket. Experimental Mathematics, 13, 415-419.
https://doi.org/10.1080/10586458.2004.10504549 |
[9] | Dong, X.H., Lau, K.S. and Liu, J.C. (2013) Cantor Boundary Behavior of Analytic Functions.
Advances in Mathematics, 232, 543-570. https://doi.org/10.1016/j.aim.2012.09.021 |
[10] | Dong, X.H., Lau, K.S. and Wu, H.H. (2017) Cauchy Transforms of Self-Similar Measures:
Starlikeness and Univalence. Transactions of the American Mathematical Society, 369, 4817-
4842. https://doi.org/10.1090/tran/6819 |
[11] | Strichartz, R.S. (2000) Mock Fourier Series and Transforms Associated with Certain Cantor
Measures. Journal d’Analyse Math′ematique, 81, 209-238.
https://doi.org/10.1007/BF02788990 |
[12] | Dai, X.R., He, X.G. and Lai, C.K. (2013) Spectral Property of Cantor Measures with Consecutive
Digits. vAdvances in Mathematics, 242, 187-208.
https://doi.org/10.1016/j.aim.2013.04.016 |
[13] | Hu, T.Y. and Lau, K.S. (2008) Spectral Property of the Bernoulli Convolutions. Advances in
Mathematics, 219, 554-567. https://doi.org/10.1016/j.aim.2008.05.004 |
[14] | An, L.X., He, X.G. and Li, H.X. (2015) Spectrality of Infinite Bernoulli Convolutions. Journal
of Functional Analysis, 269, 1571-1590. https://doi.org/10.1016/j.jfa.2015.05.008 |
[15] | Ting, X. (2023) Spectrality of Moran Measures with Three-Element Digit Sets. Acta Mathematica
Scientia, 43A, 1-17. |