全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类集合的 3 因子个数研究
3-Factor Number Study of aClass of Sets

DOI: 10.12677/PM.2024.141018, PP. 168-175

Keywords: 3 因子,非 3 因子,因子个数
Factor 3
, Non-3-Factor, Number of Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

本论文研究由任意非 3 因子元素组成的集合 \"\"其中D是一无穷整数子集,我们证明了对任意的k≥1,存在无穷多个??1,??2∈A,它们的差??1???2至少有k个 3 因子。 分别讨论了集合A是整数集或有理数集下,利用数学归纳法以及集合之间的包含关系证得了上述结论是成立的。
In this thesis, we study the set consisting of any non-3-factor element\"\" where D is an infinite subset of integers.We show that there are infinitely many ??1,??2∈A, and their difference ??1???2 has at least ?? factors of 3 for any k≥1. If A is set of integers or set of rational numbers, the above conclusion is proved by mathematical induction and the induction relation between sets.

References

[1]  Mandelbrot, B.B. (1975) Les Objets Fractals: Forme, Hasard et Dimension. Flammarion, Paris.
[2]  Matilla, P. (1995) Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. In: Cambridge Studies in Advanced Mathematics, Vol. 44, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511623813
[3]  Kigami, J. (2001) Analysis on Fractals. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511470943
[4]  Falconer, K. (2004) Fractal Geometry-Mathematical Foundations and Applications. 2nd Edition, John Wiley, New York.
https://doi.org/10.1002/0470013850
[5]  Strichartz, R. (2006) Differential Equations on Fractals. Princeton University Press, Princeton and Oxford.
https://doi.org/10.1515/9780691186832
[6]  Lund, J.P., Strichartz, R.S. and Vinson, J.P. (1998) Cauchy Transforms of Self-Similar Measures. Experimental Mathematics, 7, 177-190.
https://doi.org/10.1080/10586458.1998.10504368
[7]  Dong, X.H. and Lau, K.S. (2003) Cauchy Transforms of Self-Similar Measures: The Laurent Coefficients. Journal of Functional Analysis, 202, 67-97.
https://doi.org/10.1016/S0022-1236(02)00069-1
[8]  Dong, X.H. and Lau, K.S. (2004) An Integral Related to the Cauchy Transform on the Sierpinski Gasket. Experimental Mathematics, 13, 415-419.
https://doi.org/10.1080/10586458.2004.10504549
[9]  Dong, X.H., Lau, K.S. and Liu, J.C. (2013) Cantor Boundary Behavior of Analytic Functions. Advances in Mathematics, 232, 543-570.
https://doi.org/10.1016/j.aim.2012.09.021
[10]  Dong, X.H., Lau, K.S. and Wu, H.H. (2017) Cauchy Transforms of Self-Similar Measures: Starlikeness and Univalence. Transactions of the American Mathematical Society, 369, 4817- 4842.
https://doi.org/10.1090/tran/6819
[11]  Strichartz, R.S. (2000) Mock Fourier Series and Transforms Associated with Certain Cantor Measures. Journal d’Analyse Math′ematique, 81, 209-238.
https://doi.org/10.1007/BF02788990
[12]  Dai, X.R., He, X.G. and Lai, C.K. (2013) Spectral Property of Cantor Measures with Consecutive Digits. vAdvances in Mathematics, 242, 187-208.
https://doi.org/10.1016/j.aim.2013.04.016
[13]  Hu, T.Y. and Lau, K.S. (2008) Spectral Property of the Bernoulli Convolutions. Advances in Mathematics, 219, 554-567.
https://doi.org/10.1016/j.aim.2008.05.004
[14]  An, L.X., He, X.G. and Li, H.X. (2015) Spectrality of Infinite Bernoulli Convolutions. Journal of Functional Analysis, 269, 1571-1590.
https://doi.org/10.1016/j.jfa.2015.05.008
[15]  Ting, X. (2023) Spectrality of Moran Measures with Three-Element Digit Sets. Acta Mathematica Scientia, 43A, 1-17.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133