全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Growth of the Earthworm Millsonia omodeoi and Its Capacity to Accumulate Five Heavy Metals (HM) in Soils along a Toll Highway in C?te d’Ivoire

DOI: 10.4236/ojss.2024.141007, PP. 115-132

Keywords: M. omodeoi, Bioaccumulation, Heavy Metals, “Autoroute du Nord”, Côte d’Ivoire

Full-Text   Cite this paper   Add to My Lib

Abstract:

The roads in correlation with the traffic linked to their existences are at the origin of the emission of numerous polluting substances likely to induce disturbances of the growth and the behavioral changes in the organisms living in their vicinities. The purpose of this study is to analyze the growth and capacity accumulation of a common earthworm species (Millsonia omodeoi) in Cu, Cr, Ni, Pb and Zn in soils along a main road called “Autoroute du Nord” in C?te d’Ivoire. Thus, the earthworms were harvested in soils from a distance of 0 m (just after the sidewalk) to a distance of 200 m from the toll highway and in a control soil sampled in Lamto reserve (C?te d’Ivoire). The study was carried out in the soil laboratory at the ecological station of Lamto reserve. The Ford-Walford technique was used to determine the model and parameters most appropriated for describing the growth of earthworms. A pairwise comparison of the growth parameters was carried out using the Kruskal-Wallis test with the STATISTICA 7.1 software. The heavy metals contained in the cultivated soils and earthworms were detected and quantified using a Scanning Electron Micro-scope (MEB FEG Supra 40 VP Zeiss) and an Atomic Absorption Spectrometer SPECTRA 110 (VARIAN). The capacity accumulation of heavy metals in earthworm was determined by the bioaccumulation factor (BAF) calculation. The results of this study showed that Gompertz is the most appropriated model to describe the growth of M. omodeoi. The life cycle of M. omodeoi shows that this earthworm adopts a K type demographic strategy. Cu is the most accumulated heavy metals in M. omodeoi, when Cr is the least accumulated. Concerning heavy metal content in the earthworms, it decreases while moving away from the pavement. These results highlight a possibility of choice of M. omodeoi as 1) indicators of heavy metals pollution and 2) target of biological organisms for environmental impact studies.

References

[1]  Achadu, O.J., Goler, E.E., Ayejuyo, O.O., Olaoye, O.O. and Ochimana, O.I. (2015) Assessment of Heavy Metals (Pb, Cd, Zn and Cu) Concentrations in Soils along a Major Highway in Wukari, North-Eastern Nigeria. Journal of Biodiversity and Environmental Sciences, 6, 1-7.
https://www.innspub.net/wp-content/uploads/2022/01/JBES-V6-No2-p1-7.pdf
[2]  Singh, D.V., Bhat, J.I.A., Bhat, R.A., Dervash, M.A. and Ganei, S.A. (2018) Vehicular Stress a Cause for Heavy Metal Accumulation and Change in Physico-Chemical Characteristics of Road Side Soils in Pahalgam. Environmental Monitoring and Assessment, 190, Article No. 353.
https://doi.org/10.1007/s10661-018-6731-2
[3]  Shahid, M., Xiong, T., Masood, N., Leveque, T., Quenea, K., Austruy, A., Foucault, Y. and Dumat, C. (2013) Influence of Plant Species and Phosphorus Amendments on Metal Speciation and Bioavailability in a Smelter Impacted Soil: A Case Study of Food-Chain Contamination. Journal of Soils and Sediments, 14, 655-665.
https://doi.org/10.1007/s11368-013-0745-8
[4]  Yehouenou, A.P.E., Judicael, A.P.J. and Adamou, M.R. (2020) Dosage des métaux lourds dans le sol et les produits maraichers du site maraicher de Houéyiho au Bénin. International Journal of Biological and Chemical Sciences, 14, 1893-1901.
https://doi.org/10.4314/ijbcs.v14i5.31
[5]  WHO (The World Health Organization) (2015) Mortality and Burden of Disease from Ambient Air Pollution.
http://www.who.int/gho/phe/en/
[6]  Xu, X., Lu, X., Han, X. and Zhao, N. (2015) Ecological and Health Risk Assessment of Metal in Resuspended Particles of Urban Street Dust from an Industrial City in China. Current Science, 108, 72-79.
https://www.currentscience.ac.in/Volumes/108/01/0072.pdf
[7]  Gope, M., Masto, R.E., George, J. and Balachandran, S. (2018) Tracing Source, Distribution and Health Risk of Potentially Harmful Elements (PHEs) in Street Dust of Durgapur, India. Ecotoxicology and Environmental Safety, 154, 280-293.
https://doi.org/10.1016/j.ecoenv.2018.02.042
[8]  Lévêque, T., Capowiez, Y., Schreck, E., Xiong, T., Foucault, Y. and Dumat, C. (2014) Earthworm Bioturbation Influences the Phytoavailability of Metals Released by Particles in Cultivated Soils. Environmental Pollution, 191, 99-206.
https://doi.org/10.1016/j.envpol.2014.04.005
[9]  Seribekkyzy, G., Saimova, R.U., Saidakhmetova, A.K., Saidakhmetova, G.K. and Esimov, B.K. (2022) Heavy Metal Effects on Earthworms in Different Ecosystems. Journal of Animal Behaviour and Biometeorology, 10, Article No. 2228.
https://doi.org/10.31893/jabb.22028
[10]  Blouin, M., Hodson, M.E., Delgado, E., Baker, G., Brussaard, L., Butt, K.R., et al. (2013) A Review of Earthworm Impact on Soil Function and Ecosystem Services. European Journal of Soil Biology, 64, 161-182.
https://doi.org/10.1111/ejss.12025
[11]  Lavelle, P., Spain, A., Blouin, M., Brown, G., Decaens, T., Grimaldi, M., Jiménez, J.J., McKey, D., Mathieu, J., Velasquez, E. and Zangerlé, A. (2016) Ecosystem Engineers in A Self-Organized Soil: A Review of Concepts and Future Research Questions. Soil Science, 181, 91-109.
https://doi.org/10.1097/SS.0000000000000155
[12]  Boyer, S. and Wratten, S.D. (2010) The Potential of Earthworms to Restore Ecosystem Services after Opencast Mining—A Review. Basic and Applied Ecology, 11, 196-203.
https://doi.org/10.1016/j.baae.2009.12.005
[13]  Xiao, R., Ali, A., Xu, Y., Abdelrahman, H., Li, R., Lin, Y., Bolan, N., Shaheen, S.M., Rinklebe, J. and Zhang, Z. (2022) Earthworms as Candidates for Remediation of Potentially Toxic Elements Contaminated Soils and Mitigating the Environmental and Human Health Risks: A Review. Environment International, 158, Article ID: 106924.
https://doi.org/10.1016/j.envint.2021.106924
[14]  Tagliabue, F., Marini, E., De Bernardi, A., Vischetti, C. and Casucci, C. (2023) A Systematic Review on Earthworms in Soil Bioremediation. Applied Sciences, 13, Article No. 10239.
https://doi.org/10.3390/app131810239
[15]  Pérès, G., Vandenbulcke, F., Guerniona, M., Heddec, M., Beguiristaind, T., Douaye, F., Houotf, S., Pirona, D., Richardg, A., Bispo, H.A., Cécile, G.H., Galsomies, H.L. and Cluzeaua, D. (2011) Earthworm Indicators as Tools for Soil Monitoring, Characterization and Risk Assessment. An Example from the National Bioindicator Programme (France). Pedobiologia, 54, 77-87.
https://doi.org/10.1016/j.pedobi.2011.09.015
[16]  FER (Fond d’Entretien Routier) (2016) Rapport interne du fond d’entretien routier en Cote d’Ivoire 2016.
http://fer-ci.org/
[17]  Bultynck, P., Reliquet, C. and Felicio, M. (2002) Clean Air Initiative in Sub-Saharan African Cities—1998-2002 Progress Report: Initiative sur la qualite de l’air dans les villes d’Afrique sub-saharienne: Rapport d’avancement 1998-2002 (French). Clean Air Initiative in Sub-Saharan African Cities Working Paper; No. 10, Energy Sector Management Assistance Programme (ESMAP) Technical Paper Series; No. 48. World Bank Group, Washington DC.
http://documents.worldbank.org/curated/en/351961468193138761/Initiative-sur-la-qualite-de-lair-dans-les-villes-dAfrique-sub-saharienne-rapport-davancement-1998-2002
[18]  Public Eye Investigation (2016) Dirty Diesel—How Swiss Traders Flood Africa with Toxic Fuels. September 2016, p. 162.
https://www.publiceye.ch/fileadmin/doc/Rohstoffe/2016_PublicEye_Dirty_Diesel_Report.pdf
[19]  Lavelle, P. (1978) Les vers de terre de la savane de Lamto (Cote d’Ivoire): Peuplements, populations et fonctions dans l’écosystème. Publication du Laboratoire de Zoologie, Ecole Normale Supérieure, 12, 1-301.
https://catalogue.civa.brussels/index.php/Detail/objects/138428/lang/en_US
[20]  Bostrom, U. (1988) Growth and Cocoon Production by the Earthworm Aporrectodea caliginosa in Soil Mixed with Various Plant Materials. Pedobiologia, 32, 77-80.
https://doi.org/10.1016/S0031-4056(23)00218-4
[21]  Daniel, O., Kohli, L. and Bieri, M. (1996) Weight Gain and Weight Loss of the Earthworm Lumbricus terrestris L. at Different Temperatures and Body Weights. Soil Biology and Biochemistry, 28, 1235-1240.
https://doi.org/10.1016/0038-0717(96)00121-6
[22]  Jaeger, J.A.G., Bowman, J., Brennan, J., Fahrig L., Bert, D., Bouchard, J., Charbonneau, N., Frank, K., Gruber, B. and Tluk, V.T.K. (2005) Predicting When Animal Populations Are at Risk from Roads: An Interactive Model of Road Avoidance Behavior. Modélisation écologique, 185, 329-348.
https://doi.org/10.1016/j.ecolmodel.2004.12.015
[23]  Kaufmann, K.W. (1981) Fitting and Using Growth Curves. Oecologia, 49, 293-299.
https://doi.org/10.1007/BF00347588
[24]  Mountouris, A., Voutsas, E. and Tassios, D. (2002) Bioconcentration of Heavy Metals in Aquatic Environments: The Importance of Bioavailability. Marine Pollution Bulletin, 44, 1136-114.
https://doi.org/10.1016/S0025-326X(02)00168-6
[25]  Legendre, L. and Legendre, P. (1984) Ecologie numérique. 2—La structure des données écologique. 2nd Edition, Masson, Paris, 335.
[26]  Yan, X., Gao, D., Zhang, F., Zeng, C., Xiang, W. and Zhang, M. (2013) Relationships between Heavy Metal Concentrations in Roadside Topsoil and Distance to Road Edge Based on Field Observations in the Qinghai-Tibet Plateau, China. International Journal of Environmental Research and Public Health, 10, 762-775.
https://doi.org/10.3390/ijerph10030762
[27]  Dong, Y., Liu, S., Sun, Y., Liu, Y. and Wang, F. (2021) Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China. Applied Sciences, 11, Article No. 1408.
https://doi.org/10.3390/app11041408
[28]  Lavelle, P. (1971) Production annuelle d’un ver de terre Millsonia anomala omodeo. Revue d’écologie, 2, 240-254.
https://hal.science/hal-03531421v1/file/bitstream_118883.pdf
[29]  Van Hook, R.I. (1974) Cadmium, Lead and Zinc Distributions between Earthworms and Soils: Potential for Biological Accumulation. Bulletin of Environmental Contamination and Toxicology, 12, 509-512.
https://doi.org/10.1007/BF01684990
[30]  Takeshi, H. and Kazuyoshi, T. (2011) Earthworms and Soil Pollutants. Sensors, 11, 11157-11167.
https://doi.org/10.3390/s111211157
[31]  Gnanasekaran, S. and Amal Raj, S. (2023) Chapter 12. Heavy Metal Bioaccumulation in Sediment and Benthic Biota. In: Almayyahi, B.A., Ed., Heavy Metals—Recent Advances, IntechOpen, London, 1-15.
http://dx.doi.org/10.5772/intechopen.110015
[32]  Usmani, Z. and Kumar, V. (2015) Role of Earthworms against Metal Contamination: A Review. Journal of Biodiversity and Environmental Sciences, 6, 414-427.
https://innspub.net/role-of-earthworms-against-metal-contamination-a-review/
[33]  Richardson, J.B., Gorres, J.H. and Sizmur, T. (2020) Synthesis of Earthworm Trace Metal Uptake and Bioaccumulation Data: Role of Soil Concentration, Earthworm Ecophysiology, and Experimental Design. Environmental Pollution, 262, Article ID: 114126.
https://doi.org/10.1016/j.envpol.2020.114126
[34]  Yuvaraj, A., Govarthanan, M., Karmegam, N., Biruntha, M., Kumar, D.S., Arthanari, M., Govindarajan, R.K., Tripathi, S., Ghosh, S., Kumar, P., Kannan, S. and Thangaraj, R. (2021) Metallothionein Dependent-Detoxification of Heavy Metals in the Agricultural Field Soil of Industrial Area: Earthworm as Field Experimental Model System. Chemosphere, 267, Article ID: 129240.
https://doi.org/10.1016/j.chemosphere.2020.129240

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133