全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preliminary Study of Chemical Elements Distribution in Petroleum Source Rocks Donga and Yogou Formations of the Termit Sedimentary Basin (Est-Niger)

DOI: 10.4236/jmmce.2024.121004, PP. 49-62

Keywords: Distribution, Major Elements, Source Rocks, Donga Formation, Yogou Formation, Termit Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

XRF and EDX analyses were carried out on 18 batches of representative raw samples to determine the distribution of major chemical elements in the petroleum source rocks of Donga and Yogou formations of Termit sedimentary basin. The chemical composition of these formations is dominated by silicon (Si), aluminum (Al) and iron (Fe). This is consistent with the oxide composition, which is also dominated by silicon oxide (SiO2), aluminum oxide (Al2O3) and iron monoxide (FeO). No less important chemical elements are calcium (Ca), potassium (K), sulfur (S), titanium (Ti), magnesium (Mg), manganese (Mn) and barium (Ba), as well as some of their oxides. All these major chemical elements are carried by silicate detrital minerals associated with pyrite and goethite and/or clay minerals such as kaolinite and interstratified illite, smectite and chlorite. This trend is illustrated by the values of the Si/Al and SiO2/Al2O3 ratios.

References

[1]  Gao, P., et al. (2015) Evaluating Rare Earth Elements as a Proxy for Oil-Source Correlation. A Case Study from Aer Sag, Erlian Basin, Northern China. Organic Geochemistry, 87, 35-54.
https://doi.org/10.1016/j.orggeochem.2015.07.004
[2]  Zhao, Y., et al. (2018) Trace and Rare Earth Element Geochemistry of Crude Oils and Their Coexisting Water from the Jiyuan Area of the Ordos Basin, N China. Geological Journal, 53, 336-348.
https://doi.org/10.1002/gj.2897
[3]  Nakada, R., Takahashi, Y., Zheng, G., Yamamoto, Y. and Shimizu, H. (2010) Abundances of Rare Earth Elements in Crude Oils and Their Partitions in Water. Geochemical Journal, 44, 411-418.
https://doi.org/10.2343/geochemj.1.0083
[4]  Mani, D., Ratnam, B., Kalpana, M.S., Patil, D.J. and Dayal, A.M. (2016) Elemental and Organic Geochemistry of Gondwana Sediments from the Krishna-Godavari Basin, India. Geochemistry, 76, 117-131.
https://doi.org/10.1016/j.chemer.2016.01.002
[5]  Ramirez-Caro, D. (2013) Rare Earth Elements (REE) as Geochemical Clues to Reconstruct Hydrocarbon Generation History. Master Thesis, Kansas State University, Manhattan, Kansas.
https://krex.k-state.edu/handle/2097/16871
[6]  Dreyfus, S. (2006) Détermination directe des éléments traces (Ni, V, Cu, Mo, Sn, Ba, Pb) et de leurs rapports isotopiques dans les huiles brutes par ICP/MS.Définition de nouveaux traceurs géochimiques et application à l’étude du système pétrolier du bassin de Portiguar (Brésil). Doctorat Thesis, Université de Pau, Pau.
http://www.theses.fr/2006PAUU3039
[7]  Craigie, N. (2018) Principles of Elemental Chemostratigraphy: A Practical User Guide. In: Swennen, R. and Leuven, K.U., Eds., Advances in Oil and Gas Exploration & Production, Springer International Publishing, Berlin.
https://doi.org/10.1007/978-3-319-71216-1
[8]  Ataman, G. (1966) Géochimie des minéraux argileux dans les bassins sédimentaires marins études sur le bassin triasique du Jura. Revue Française de Géotechnique, 25, 67-82.
https://www.persee.fr/doc/sgeol_0080-9020_1966_mon_25_1
[9]  Awongo, M.L. (1984) Stratigraphie, sédimentologie et géochimie des terres noires du Jurassique moyen et supérieur de la Provence (Sud-Est de la France). Phdthesis, Université Paul Cézanne - Aix-Marseille III.
https://tel.archives-ouvertes.fr/tel-00799978
[10]  Drugat, L. (2018) Geochemistry of Speleothems from the South-East of Europe (U-Th and 14C Chronology, Trace Elements, 87Sr/86Sr, 18O/16O, 13C/12C) for Climatic and Environmental Reconstructions during the Holocene. Theses, Université Paris-Saclay, Paris.
https://tel.archives-ouvertes.fr/tel-02495354
[11]  Bjorlykke, K. (éd.) (2015) Petroleum Geoscience: From Sedimentary Environments to Rock Physics. 2e éd., Springer-Verlag, Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-34132-8
[12]  Meyers, P.A. (1994) Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114, 289-302.
https://doi.org/10.1016/0009-2541(94)90059-0
[13]  Moldowan, J.M., Seifert, W.K. and Gallegos, E.J. (1985) Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG Bull., 69, 1255-1268.
https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D
[14]  Ibrahim, M.A., Yao, K. and Digbehi, Z. (2020) Mineralogical Characterization of Upper Cretaceous Petroleum Source Rocks of Termit Sedimentary Basin (Niger). Journal of Materials and Environmental Science, 11, 1173-1183.
http://www.jmaterenvironsci.com
[15]  Justin, W. (2017) 5 Reasons to Put Savannah Petroleum #SAVP on Your Watchlist. févr.
https://www.voxmarkets.co.uk/blogs/5-reasons-to-put-savannah-petroleum-savp-on-your-watchlist/
[16]  Ross, D.J.K. and Bustin, R.M. (2009) Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260, 1-19.
https://doi.org/10.1016/j.chemgeo.2008.10.027
[17]  Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., Moghadam, M.R. and Shankara, M. (2010) Geochemistry of Lower Jurassic Shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, Source Weathering and Tectonic Setting. Chem. Geochemistry, 71, 279-288.
https://doi.org/10.1016/j.chemer.2010.10.001
[18]  Fu, X., Wang, J., Zeng, Y., Cheng, J. and Tan, F. (2011) Origin and Mode of Occurrence of Trace Elements in Marine Oil Shale from the Shengli River Area, Northern Tibet, China. Oil Shale, 28, 487.
https://doi.org/10.3176/oil.2011.4.03
[19]  Bou Daher, S., Nader, F.H., Strauss, H. and Littke, R. (2014) Depositional Environment and Source-Rock Characterisation of Organic-Matter Rich Upper Santonian-Upper Campanian Carbonates, Northern Lebanon. Journal of Petroleum Geology, 37, 5-24.
https://doi.org/10.1111/jpg.12566
[20]  Genik, G.J. (1992) Regional Framework, Structural and Petroleum Aspects of Rift Basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics, 213, 169-185.
https://doi.org/10.1016/0040-1951(92)90257-7
[21]  Chang, E. and Zung, L.S. (2017) 3D Reservoir Characterization of Field Deta, Termit Basin, Niger. In: Awang, M., Negash, B.M., Md Akhir, N.A., Lubis, L.A. and Md. Rafek, A.G., éds., ICIPEG 2016, Springer, Singapore, 323-335.
https://doi.org/10.1007/978-981-10-3650-7_28
[22]  Nasaruddin, M.N., Zung, L.S. and Rafek, A.G.M. (2017) Petrophysical Analysis of E5 Sand Group of Sokor Formation, Termit Basin, Niger. IOP Conference Series: Earth and Environmental Science, 88, 012003.
https://doi.org/10.1088/1755-1315/88/1/012003
[23]  Ning, Z., Xia, G., Jiangqin, H., Zhongmin, C. and Guangya, Z. (2018) Sedimentary Characteristics and Lithological Trap Identification of Distant Braided Delta Deposits: A Case on Upper Cretaceous Yogou Formation of Termit Basin, Niger. E3S Web Conf., 53, 03020.
https://doi.org/10.1051/e3sconf/20185303020
[24]  Zhou, H., Peng, X. and Pan, J. (2004) Distribution, Source and Enrichment of Some Chemical Elements in Sediments of the Pearl River Estuary, China. Continental Shelf Research, 24, 1857-1875.
https://doi.org/10.1016/j.csr.2004.06.012
[25]  Murray, H.H. (2006) Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays. 2nd Edition, Elsevier Science, Amsterdam, Boston.
[26]  Ousman, Z., Alassane, A., Dan, L.N., Paolo, R., Gemma, T.P. and Issaka, A. (2008) Caractérisation des Sols de Périmètres Irrigués de l’Ouest du Niger par Diffraction de Rayons X. Scinapse, 10, 89-97.
https://scinapse.io/papers/2499476914

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133