|
E-Commerce Letters 2024
基于社交媒体信息交互对股价联动的影响研究
|
Abstract:
近年来,随着计算机和互联网通信技术的快速发展,股吧等互联网平台开始成为投资者获取信息的重要媒介之一。社交媒体上的信息交互是否会影响股价联动?是如何影响的?本文以2019~2020年主板、中小板、创业板这三个板块的229只股票为样本,采用回归分析以及复杂网络分析的方法,实证检验了社交媒体信息交互对股价联动的影响。研究发现,2019年各个板块股吧内信息交互越强,股价联动效应越弱。2020年由于风险存在仅主板的信息交互与股价联动有关。因此企业应加强股吧内信息交互的监管,减少虚假信息和恶意信息的传播,维护企业的声誉与形象,以降低其对股价联动的影响。
In recent years, with the rapid development of computer and internet communication technology, internet platforms such as stock bar have become one of the important media for investors to obtain information. Does the interaction of information on social media affect stock price linkage? How is it affected? This paper takes 229 stocks from the main board, small and medium-sized board and GEM board in 2019~2020 as samples, adopts regression analysis and complex network analysis methods, and empirically tests the influence of social media information interaction on stock price linkage. The study found that in 2019, the stronger the information interaction within the stock bar of each sector, the weaker the linkage effect of stock prices. In 2020, due to the existence of risks, only the information interaction of the main board is related to the linkage of stock prices. Therefore, enterprises should strengthen the supervision of information interaction in the stock exchange, reduce the spread of false information and malicious information, and maintain the reputation and image of enterprises to reduce its impact on the linkage of stock prices.
[1] | Notarmuzi, D., Castellano, C., Flammini, A., et al. (2022) Universality, Criticality and Complexityof Information Propa-gation in Social Media. Nature Communications, 13, 1-8. https://doi.org/10.1038/s41467-022-28964-8 |
[2] | Min, H., Cao, J., Yuan, T., et al. (2020) Topic Based Time-Sensitive Influence Maximization in Online Social Networks. World Wide Web, 23, 1831-1859. https://doi.org/10.1007/s11280-020-00792-0 |
[3] | Ghavasieh, A., De Domenico, M. (2021) Multiscale Information Propagation in Emergent Functional Networks. Entropy, 23, Article 1369. https://doi.org/10.3390/e23101369 |
[4] | 邓小咏, 李晓红. 网络环境下的用户信息行为探析[J]. 情报科学, 2008, 26(12): 1810-1813. |
[5] | Pool, V.K., Stoffman, N. and Yonker, S.E. (2015) The People in Your Neighborhood: Social Interactions and Mutual Fund Portfolios. Journal of Finance, 70, 2679-2732. https://doi.org/10.1111/jofi.12208 |
[6] | Ivkovic, Z. and Weisbenner, S. (2007) Information Diffusion Effects in In-dividual Investors’ Common Stock Purchases: Covet Thy Neighbors’ Investment Choices. Review of Financial Studies, 20, 1327-1357.
https://doi.org/10.1093/revfin/hhm009 |
[7] | Dougal, C., Parsons, C.A. and Titman, S. (2015) Urban Vibrancy and Corporate Growth. Journal of Finance, 70, 163-210. https://doi.org/10.1111/jofi.12215 |
[8] | Butler, A.W. and Gurun, U.G. (2012) Educational Networks Mutual Fund Voting Patterns, and CEO Compensation. Review of Financial Studies, 25, 2533-2562. https://doi.org/10.1093/rfs/hhs067 |
[9] | 张维, 李奕, 王鹏飞. 社交媒体与资本市场研究进展与展望: 基于文献计量的方法[J]. 计量经济学报, 2022(1): 32-57. |
[10] | 熊艳. 论坛发帖与股价行为:情绪宣泄还是信息传递? [J]. 中央财经大学学报, 2022(5): 29-45. |
[11] | 郑建东, 吕晓亮, 吕斌, 等. 社交媒体平台信息交互与资本市场定价效率——基于股吧论坛亿级大数据的证据[J]. 数量经济技术研究, 2022, 39(11): 91-112. |
[12] | 朱孟楠, 梁裕珩, 吴增明. 互联网信息交互网络与股价崩盘风险: 舆论监督还是非理性传染[J]. 中国工业经济, 2020(10): 81-99. |
[13] | 陈张杭健, 吴粤, 李世炳, 等. 股吧个体信息交互对股价联动关系的影响研究[J]. 管理科学学报, 2021, 24(5): 47-69. |
[14] | 董大勇, 刘海斌, 胡杨, 等. 股东联结网络影响股价联动关系吗? [J]. 管理工程学报, 2013, 27(3): 20-26. |
[15] | Michael, S.D., Jared, J., Darren, T.R., et al. (2017) The Comovement of Investor Atten-tion. Mangement Science, 63, 2773-3145. https://doi.org/10.1287/mnsc.2016.2477 |