全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interactions of Aurein with Model Membranes and Antimalarials

DOI: 10.4236/ajac.2024.152005, PP. 72-98

Keywords: Aurein, Fluorescence, DPPC, SPM, cholesterol, DPPC-SPM-CHOL, Quinine, Antimalarials

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aurein is a cationic antimicrobial peptide, rich in phenylalanine residues. Although the peptide has been extensively studied, its mechanism of action is not fully understood and has not been established. This project is focused on studying the interactions of aurein with model biological membranes and antimalarials using Fourier Transform Infrared (FTIR), fluorescence, dynamic light scattering (DLS), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. FTIR data revealed conformational changes to the secondary structure of the peptide in the presence of the model membranes. The strongest interactions of aurein were found with DOPC and lipid raft systems. Fluorescence data revealed some differences in the mechanism of interaction between aurein and lipid rafts. Topographical analysis was performed using atomic force microscopy (AFM). AFM images of the peptide with its lipid rafts showed a change in surface roughness suggesting a different mechanism of interaction. DLS data in agreement with FTIR confirmed that aurein interacts differently with the lipid rafts. The results gathered from this study provided new insights on the interaction of aurein. On the other hand, drug-drug interaction issues continue to present a major dilemma for the clinician caring for complex patients such as those infected with infectious disease. This study has examined the interaction of aurein with quinine, primaquine, and chloroquine. Significant interactions between aurein and antimalarials occured at a higher concentration of antimalarials. Interactions between aurein and anti-malarials reveal a strong interaction between aurein and primaquine. Interactions between aurein and quinine or chloroquine were found to be weak and negligible. FTIR, TGA, and DSC may be used in a complementary way to gain insights into the possible drug-drug interactions involving aurein. These studies are needed to initiate in vivo controlled interaction studies between antibiotics and antimalarials.

References

[1]  López-Meza, J.E., Ochoa-Zarzosa, A., Barboza-Corona, J.E. and Bideshi, D.K. (2015) Antimicrobial Peptides: Current and Potential Applications in Biomedical Therapies. BioMed Research International, 2015, Article ID: 367243.
https://doi.org/10.1155/2015/367243
[2]  Collignon, P.J. (2002) Antibiotic Resistance. Medical Journal of Australia, 177, 325-329.
https://doi.org/10.5694/j.1326-5377.2002.tb04794.x
[3]  World Health Organization (2014) Antimicrobial Resistance: Global Report on Surveillance. http://www.who.int/drugresistance/documents/surveillancereport/en/
[4]  Reddy, K.V., Yedery, R.D. and Arana, C. (2004) Antimicrobial Peptides: Premises and Promises. International Journal of Antimicrobial Agents, 24, 536-547.
https://doi.org/10.1016/j.ijantimicag.2004.09.005
[5]  Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Review, 55, 27-55.
https://doi.org/10.1124/pr.55.1.2
[6]  Sevcsik, E., Pabst, G., Richter, W., Danner, S., Amenitsch, H. and Lohner, K. (2008) Interaction of LL-37 with Model Membrane Systems of Different Complexity: Influence of the Lipid Matrix. Biophysical Journal, 94, 4688-4699.
https://doi.org/10.1529/biophysj.107.123620
[7]  Sitaram, N., Subbalashmi, C. and Nagaraj, R. (2003) Indolicidin, a 13-Residue Basic Antimicrobial Peptide Rich in Tryptophan and Proline, Interacts with Ca2+-Calmodulin. Biochemical and Biophysical Research Communications, 309, 879-884.
https://doi.org/10.1016/j.bbrc.2003.08.095
[8]  Subbalakshmi, C. and Sitaram, N. (1998) Mechanism of Antimicrobial Action of Indolicidin. FEMS Microbiology Letter, 160, 91-96.
https://doi.org/10.1016/S0378-1097(98)00008-1
[9]  Rozek, A., Friedrich, C.L. and Hancock, R.E. (2000) Structure of the Bovine Antimicrobial Peptide Aurein Bound to Dodecylphophocholine and Sodium Dodecyl Sulfate Micelles. Biochemistry, 39, 15765-15774.
https://doi.org/10.1021/bi000714m
[10]  Rozek, T., et al. (2000) The Antibiotic and Anticancer Active Aurein Peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. European Journal of Biochemistry, 267, 5330-5341.
https://doi.org/10.1046/j.1432-1327.2000.01536.x
[11]  Zhao, L. and Feng, S. (2004) Effects of Lipid Chain Length on Molecular Interactions between Paclitaxel and Phospholipid within Model Biomembranes. Journal of Colloid and Interface Science, 274, 55-68.
https://doi.org/10.1016/j.jcis.2003.12.009
[12]  Zhang, T., Muraih, J.K., Tishbi, N., Herskowitz, J., Victor, R.L., Silverman, J., Mintzer, E., et al. (2014) Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. Journal of Biological Chemistry, 289, 11584-11591.
https://doi.org/10.1074/jbc.M114.554444
[13]  Goluszko, P. and Nowicki, B. (2005) Membrane Cholesterol: A Crucial Molecule Affecting Interactions of Microbial Pathogens with Mammalian Cells. Infection and Immunity, 73, 7791-7796.
https://doi.org/10.1128/IAI.73.12.7791-7796.2005
[14]  Hancock, R.E.W. and Rozek, A. (2002) Role of Membranes in the Activities of Antimicro-bial Cationic Peptides. FEMS Microbiology Letters, 206, 143-149.
https://doi.org/10.1111/j.1574-6968.2002.tb11000.x
[15]  McHenry, A.J., Sciacca, M.F.M., Brender, J.R. and Ramamoorthy, A. (2012) Does Cholesterol Suppress the Antimicrobial Peptide Induced Disruption of Lipid Raft Containing Membranes? Biochimica et Biophysica Acta (BBA)—Biomembranes, 1818, 3019-3024.
https://doi.org/10.1016/j.bbamem.2012.07.021
[16]  Beriashvili, D., Taylor, R., Kralt, B., Abu Mazen, N., Taylor, S.D. and Palmer, M. (2018) Mechanistic Studies on the Effect of Membrane Lipid Acyl Chain Composition on Daptomycin Pore Formation. Chemistry and Physics of Lipids, 216, 73-79.
https://doi.org/10.1016/j.chemphyslip.2018.09.015
[17]  Der Laarse, A.V., Höld, K.M. and Bastiaanse, E.L. (1997) The Effect of Membrane Cholesterol Content on Ion Transport Processes in Plasma Membranes. Cardiovascular Research, 33, 272-283.
https://doi.org/10.1016/S0008-6363(96)00193-9
[18]  Mills, T., Huang, J., Feigenson, G. and Nagle, J. (2009) Effects of Cholesterol and Unsaturated DOPC Lipid on Chain Packing of Saturated Gel-Phase DPPC Bilayers. General Physiology and Biophysics, 28, 126-139.
https://doi.org/10.4149/gpb_2009_02_126
[19]  Cheng, J.T.J., Hale, J.D., Elliot, M., Hancock, R.E.W. and Straus, S.K. (2011) The Importance of Bacterial Membrane Composition in the Structure and Function of Aurein 2.2 and Selected Variants. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1808, 622-633.
https://doi.org/10.1016/j.bbamem.2010.11.025
[20]  Echelon Biosciences (2015) Product Details for 1, 2-Dioleoylsn-Glycero-3-Phosphocholine (DOPC) [4235-95-4]: Assay and Reageants for Drug Discovery in Lipid Signaling Pathways.
https://www.echelon-inc.com/product/dlpc-120-pc/
[21]  Freed, J.H. and Ge, M. (2003) Hydration, Structure, and Molecular Interactions in the Headgroup Region of Dioleoylphosphatidylcholine Bilayers: An Electron Spin Resonance Study. Biophysical Journal, 85, 4023-4040.
https://doi.org/10.1016/S0006-3495(03)74816-4
[22]  Csiszár, A., Koglin, E., Meier, R.J. and Klumpp, E. (2006) The Phase Transition Behavior of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphocholine (DPPC) Model Membrane Influenced by 2,4-Dichlorophenol—An FT-Raman Spectroscopy Study. Chemistry and Physics of Lipids, 139, 115-124.
https://doi.org/10.1016/j.chemphyslip.2005.11.005
[23]  Chan, Y.H.M. and Boxer, S.G. (2007) Model Membrane Systems and Their Applications. Current Opinion in Chemical Biology, 11, 581-587.
https://doi.org/10.1016/j.cbpa.2007.09.020
[24]  Sitaram, N. and Nagaraj, R. (1999) Interaction of Antimicrobial Peptides with Biological and Model Membranes: Structural and Charge Requirements for Activity. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1462, 29-54.
https://doi.org/10.1016/S0005-2736(99)00199-6
[25]  Center for Strategic and International Studies (2015) Infectious Diseases: A Persistent Threat.
http://www.smartglobalhealth.org/issues/entry/infectious-diseases
[26]  American Chemical Society International Historic Landmarks (2014) Discovery and Development of Penicillin.
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html
[27]  Viola, G., Salvador, A., Cecconet, L., Basso, G., Vedaldi, D., Dall’Acqua, F., Aloisi, G.G., Amelia, M., Barbafina, A., Latterini, L. and Elisei, F. (2007) Photophysical Properties and Photobiological Behavior of Amodiaquine, Primaquine and Chloroquine. Photochemistry and Photobiology, 83, 1415-1427.
https://doi.org/10.1111/j.1751-1097.2007.00181.x
[28]  Dyck, M., Kerth, A., Blume, A. and Losche, M. (2006) Interaction of the Neurotransmitter, Neuropeptide Y, with Phospholipid Membranes: Infrared Spectroscopic Characterization at the Air/Water Interface. The Journal of Physical Chemistry B, 110, 22152-22159.
https://doi.org/10.1021/jp062537q
[29]  Blume, A., Hubner, W. and Messner, G. (1988) Fourier Transform Infrared Spectroscopy of 13C: O-Labeled Phospholipids Hydrogen Bonding to Carbonyl Groups. Biochemistry, 27, 8239-8249.
https://doi.org/10.1021/bi00421a038
[30]  Grdadolnik, J. and Hadzi, D. (1998) FT Infrared and Raman Investigation of Saccharide-Phosphatidylcholine Interactions Using Novel Structure Probes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54, 1989-2000.
https://doi.org/10.1016/S1386-1425(98)00111-5
[31]  Giovanela, M., Parlanti, E., Soriano-Sierra, E.J., Sold, M.S. and Sierra, M.M.D. (2004) Elemental Compositions, FT-IR Spectra and Thermal Behavior of Sedimentary Fulvic and Humic Acids from Aquatic and Terrestrial Environments. Geochemical Journal, 38, 255-264.
https://doi.org/10.2343/geochemj.38.255
[32]  Samouillan, V., Dandurand-Lods, J., lamure, A., Maurel, E., Lacabanne, C., Gerosa, G., Vanturini, A., Casarotto, D., Gheraldini, L. and Spina, M. (1999) Thermal Analysis Characterization of Aortic Tissues for Cardiac Valves Bioprostheses. Journal of Biomedical Materials Research, 46, 531-538.
https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<531::AID-JBM11>3.0.CO;2-2
[33]  Morel, B., Varela, L. and Conejero-Lara, F. (2010) The Thermodynamic Stability of Amyloid Fibrils Studied by Differential Scanning Calorimetry. The Journal of Physical Chemistry B, 114, 4010-4019.
https://doi.org/10.1021/jp9102993
[34]  Akkara, J.A., Senegal, K.J. and Kaplan, D.L. (1991) Synthesis and Characterization of Polymers Produced by Horseradish in Dioxane. Journal of Polymer Science: Part A: Polymer Chemistry, 29, 1561-1574.
https://doi.org/10.1002/pola.1991.080291105
[35]  Kaasgaard, T., Mouritsen, O.G. and Jorgensen, K. (2003) Freeze/Thaw Effects on Lipid-Bilayer Vesicles Investigated by Differential Scanning Calorimetry. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1615, 77-85.
https://doi.org/10.1016/S0005-2736(03)00194-9
[36]  Russell, A.L., Kennedy, A.M., Spuches, A.M., Gibson, W.S., Venugopal, D., Klapper, D., Srouji, A.H., Bhonsle, J.B. and Hicks, R.P. (2011) Determining the Effect of the Incorporation of Unnatural Amino Acids into Antimicrobial Peptides on the Interactions with Zwitterioninc and Anionic Membrane Model Systems. Chemistry and Physics of Lipids, 164, 740-758.
https://doi.org/10.1016/j.chemphyslip.2011.09.003
[37]  Liyanage, M.R., Bakshi, K., Volkin, D.B. and Middaugh, C.R. (2013) Fluorescence Spectroscopy of Peptides. In: Nixon, A., Ed., Therapeutic Peptides, Humana Press, Totowa, 237-246.
https://doi.org/10.1007/978-1-62703-673-3_16
[38]  Ahn, J.J., Kim, Y., Lee, S.Y., Hong, J.Y., Kim, G.W. and Hwang, S.Y. (2015) Fluorescence Melting Curve Analysis Using Self-Quenching Duallabeled Peptide Nucleic Acid Probes for Simultaneously Identifying Multiple DNA Sequences. Analytical Biochemistry, 484, 143-147.
https://doi.org/10.1016/j.ab.2015.05.022
[39]  Aoki, W., Kitahara, N., Fujita, A., Shibasaki, S., Morisaka, H., Kuroda, K. and Ueda, M. (2013) Detection of Candida albicans by Using a Designed Fluorescence-Quenched Peptide. Journal of Bioscience and Bioengineering, 116, 573-575.
https://doi.org/10.1016/j.jbiosc.2013.05.003
[40]  Zamotaiev, O.M., Postupalenko, V.Y., Shvadchak, V.V., Pivovarenko, V.G., Klymchenko, A.S. and Mely, Y. (2011) Improved Hydrationsensitive Dual-Fluorescence Label for Monitoring Peptide-Nucleic Acid Interactions. Bioconjugate Chemistry, 22, 101-107.
https://doi.org/10.1021/bc100434d
[41]  Shaw, J., Slade, A. and Yip, C. (2003) Simultaneous in Situ Total Internal Reflectance Fluorescence/Atomic Force Microscopy Studies of DPPC/dPOPC Microdomains in Supported Planar Lipid Bilayers. Journal of the American Chemical Society, 125, 11838-11839.
https://doi.org/10.1021/ja0370894
[42]  Eastman, T. (1996) Adhesion Forces between Surface-Modified AFM Tips and a Mica Surface. Langmuir, 12, 2859-2862.
https://doi.org/10.1021/la9504220
[43]  Santos, N.C. and Castanho, M. (2004) An Overview of the Biophysical Applications of Atomic Force Microscopy. Biophysical Chemistry, 107, 133-149.
https://doi.org/10.1016/j.bpc.2003.09.001
[44]  McDuffee, A.T., Senisterra, G., Huntley, S., Lepock, J.R., Sekhar, K.R., Meredith, M.J., Borrelli, M.J., Morrow, J.D. and Freeman, M. (1997) Proteins Containing Non-Native Disulfide Bonds Generated by Oxidative Stress Can Act as Signals for the Induction of the Heat Shock Response. Journal of Cellular Physiology, 171, 143-151.
https://doi.org/10.1002/(SICI)1097-4652(199705)171:2<143::AID-JCP4>3.0.CO;2-O
[45]  Dundurand, J., Samouillan, V., Lacoste-Ferre, M.H. and Lacabanne, C. (2014) Conformational and Thermal Characterization of a Synthetic Peptidic Fragment Inspired from Human Tropoelastin: Signature of the Amyloid Fibers. Pathologie Biologie, 62, 100-107.
https://doi.org/10.1016/j.patbio.2014.02.001
[46]  Kimura, S., Yamashita, S. and Okamoto, T. (1986) Differential Scanning Calorimetry of Lipids of Stored Apples. Agricultural and Biological Chemistry, 50, 707-711.
https://doi.org/10.1080/00021369.1986.10867444
[47]  Hirata, I.Y., Cezari, M.H.S., Juliano, M.A. and Juliano, L. (1995) Internally Quenched Fluorogenic Protease Substrates: Solid-Phase Synthesis and Fluorescence Spectroscopy of Peptides Containing Ortho-Aminobenzoyl/Dinitrophenyl Groups as Donor-Acceptor Pairs. Letters in Peptide Science, 1, 299-308.
https://doi.org/10.1007/BF00119771
[48]  Wittenburg, S., Stankewicz, C. and Rininsland, F. (2006) Biotinylated Peptides for Rapid Identification of Substrates and Inhibitors of Kinases and Phosphatases with Fluorescence Superquenching. Assay and Drug Development Technologies, 4, 535-543.
https://doi.org/10.1089/adt.2006.4.535
[49]  Pinheiro, M., Arede, M., Giner-Casares, J.J., Nunes, C., Caio, J.M., Moiteiro, C., Lucio, M., Camacho, L. and Reis, S. (2013) Effects of a Novel Antimycobacterial Compound on the Biophysical Properties of a Pulmonary Surfactant Model Membrane. International Journal of Pharmaceutics, 450, 268-277.
https://doi.org/10.1016/j.ijpharm.2013.03.062

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133