|
Pure Mathematics 2024
二阶复合型非齐次线性常微分方程边值问题的求解
|
Abstract:
本文针对二阶复合型非齐次线性微分方程的边值问题进行研究。相似构造法通常用于求解二阶齐次线性微分方程的边值问题,本文将相似构造法应用于求解二阶复合型非齐次线性微分方程的边值问题。该方法是求解一般复合型二阶线性微分方程边值问题的一种方便、有效、有创新性的方法。本文的研究扩充了相似构造法的应用范围。
In this paper, the boundary value problem of second-order composite non-homogeneous linear differential equation is studied. The similarity construction method is usually used to solve the boundary value problem of second-order homogeneous linear differential equations. In this paper, the similarity construction method is applied to solve the boundary value problem of second-order composite non-homogeneous linear differential equations. This method is a convenient, effective and innovative method for solving the boundary value problem of general second-order linear dif-ferential equations. The research in this paper expands the application range of similar construc-tion method.
[1] | Landahl, H.D. and Hanson, B.D. (1975) A Three Stage Population Model with Canniballism. Bulletin of Mathematical Biology, 37, 11-17. https://doi.org/10.1016/S0092-8240(75)80003-6 |
[2] | Tognetti, K. (1975) The Two Stage Stochastic Model. Mathematical Biosciences, 25, 195-204.
https://doi.org/10.1016/0025-5564(75)90002-4 |
[3] | Chasseigne, E., Chaves, M. and Ross, J.D. (2006) Asymptotic Behavior for Nonlocal Diffusion Equations. Journal de Mathématiques Pures et Appliquées, 86, 271-291. https://doi.org/10.1016/j.matpur.2006.04.005 |
[4] | Zhang, G.B., Li, W.T. and Lin, G. (2009) Traveling Waves in Delayed Predator-Prey Systems with Nonlocal Diffusion and Stage Structure. Mathematical and Computer Modelling, 49, 1021-1029.
https://doi.org/10.1016/j.mcm.2008.09.007 |
[5] | Coville, J. and Dupaigne, L. (2007) On a Nonlocal Reaction Diffusion Equation Arising in Population Dynamics. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 137, 1-29.
https://doi.org/10.1017/S0308210504000721 |
[6] | 陆静. 用格林函数法求解二阶微分方程边值问题[J]. 太原师范学院学报(自然科学版), 2011, 10(4): 32-36. |
[7] | 孙赫. 一类常微分方程边值问题的格林函数的求法[J]. 吉首大学学报(自然科学版), 2018, 39(1): 14-18. |
[8] | 刘丽环, 常晶, 高艳超. 二阶常微分方程边值问题的格林函数求法[J]. 长春工业大学学报(自然科学版), 2011, 32(1): 102-104. |
[9] | 刘慧. 二阶常微分方程边值问题Green函数的研究[J]. 泰山学院学报, 2018, 40(3): 56-61. |
[10] | 田献珍, 霍海峰. 二阶线性非齐次常微分方程的格林函数法[J]. 吉首大学学报(自然科学版), 2012, 33(6): 12-14. |
[11] | 李培超, 李培伦, 黎波, 葛良燕. 一类二阶常系数非齐次线性微分方程及边值问题的解法[J]. 数学的实践与认识, 2011, 41(3): 210-216. |
[12] | 黄力, 段向阳, 欧艳.一类二阶微分方程边值问题的近似解[J]. 湖南工业大学学报, 2011, 25(3): 25-26+96. |
[13] | 马翠, 周先东, 宋丽娟. 二阶线性常微分方程的两点边值问题的新解法[J]. 西南师范大学学报(自然科学版), 2010, 35(4): 74-78. |
[14] | 陈铁军. 基于高精度差分法的线性常微分方程边值问题研究[J]. 安阳工学院学报, 2018, 17(6): 85-88. |
[15] | 刘杨, 王玉兰. 用两种再生核方法求解一类线性常微分方程初边值问题[J]. 内蒙古工业大学学报(自然科学版), 2017, 36(5): 324-330. |
[16] | 黄佳玥. 常微分方程边值问题的一种数值解法[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2019. |
[17] | 叶康生, 邱廷柱. 二阶非线性常微分方程边值问题有限元p型超收敛计算[J]. 工程力学, 2019, 36(12): 7-14. |
[18] | 李明英. 二阶常微分方程边值问题的5点差分算法[J]. 运筹与模糊学, 2022, 12(1): 58-67.
https://doi.org/10.12677/ORF.2022.121006 |
[19] | Riverafigueroa, A. and Riverarebolledo, J.M. (2015) Alternative Approach to Second-Order Linear Differential Equations with Constant Coefficients. International Journal of Mathematical Education, 46, 765-775.
https://doi.org/10.1080/0020739X.2014.992988 |
[20] | 李顺初. 复合型微分方程的边值问题的相似构造解法[J]. 西华大学学报(自然科学版), 2013, 32(4): 27-31. |
[21] | 王俊超, 李顺初. 二阶线性齐次微分方程解的相似结构[J]. 理论数学, 2012, 2(1): 23-27. |
[22] | 彭春. 二阶齐次线性常微分方程的弹性边值问题及其应用研究[D]: [硕士学位论文]. 成都: 西华大学, 2021. |