全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design Optimization of a Lattice Tower: Structure and Foundations

DOI: 10.4236/ojapps.2024.142035, PP. 483-493

Keywords: Lattice Tower, Wheelbase, Cost, Optimization, Foundation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Produced in power plants, electrical energy is transported to places of consumption via the electricity network. At the heart of this network are the supports that allow electricity to be efficiently transported over long distances, guaranteeing the security and supply of energy to the various centers of use. In the construction of a line, supports occupy an important part in terms of safety and construction cost. It is therefore essential to optimize their use to reduce the cost of transmission lines. This work addresses this problem, which focuses on the optimal utilization of X-lattice towers in the construction of overhead power lines. The challenge is to reconcile the search for optimal cost and respect for the design, resistance and service constraints of the structure. To do this, a parameter having a strong correlation with the weight, foundation and construction cost of the X-lattice tower for 161 kV lines is determined as an important cost variable. This parameter is the wheelbase of the towers. The junction point between the structure and the foundations is obtained by measuring the forces at the base of the tower following the lowering of the loads. These efforts make it possible to size foundations which are of the inverted or isolated sole type. The results obtained reveal that from 8 meters in width, the wheelbase gradually changes until the optimum is obtained at 6.29 meters. With this wheelbase, the production cost is optimal. It clearly emerges from this study that the construction of lattice pylons with a wheelbase of approximately 6.29 meters makes it possible to optimize the cost of construction of 161 kV lines in the Republic of Benin.

References

[1]  United Nations (2015) United Nations Sustainable Development Goal No. 7.
https://www.un.org/sustainabledevelopment/energy/#:~:text=Goal%207%20is%20about%20ensuring,%2C%20education%2C%20healthcare%20and%20transportation
[2]  United Nations Statistics Division, et al. (2019) Suivi de l’ODD 7: Rapport intérimaire sur l’énergie 2019 [Monitoring SDG 7: Interim Energy Report 2019].
https://openknowledge.worldbank.org/handle/10986/31752?locale-attribute=en
[3]  ARE (2022) Avis n° 2022-03/CNR/ARE relatif au réexamen du projet de convention de concession entre l’Etat et la Société Béninoise d'Energie Electrique (SBEE) pour la distribution et la vente d'électricité au Bénin.
https://123dok.net/document/yev05gvr-ji-i-e-autorite-de-regulation-de-electricit%C3%A9.html
[4]  Vinci (2021) VINCI Energies Will Build a Set of Electrical Infrastructures in Benin.
https://www.vinci.com/
[5]  (2018) Ministry of Energy of Republic of Benin. Benin Sustainable and Secure Access Project to Electric Power (PADSBEE 2019-2025).
https://energie.gouv.bj/page/projet-dacces-durable-et-securise-du-benin-a-lenergie-electrique-padsbee-2019-2025
[6]  Meyer, Z. (2022) Why Can’t We Store Alternating Current?
https://www.synonyme-du-mot.com/les-articles/pourquoi-on-ne-peut-pas-stocker-le-courant-alternatif
[7]  Kiessling, F., Nefzger, P., Nolasco, J.F. and Kaintzyk, U. (2003) Overhead Power Lines. Springer, Berlin.
https://doi.org/10.1007/978-3-642-97879-1
[8]  Sadhu, P.K. and Das, S. (2020) Mechanical Design of Overhead Lines. CRC Press, Boca Raton.
https://doi.org/10.1201/b19119-12
[9]  Khodzhaiev, M. and Reuter, U. (2021) Structural Optimization of Transmission Towers Using a Novel Genetic Algorithm Approach with a Variable Length Genome. Engineering Structures, 240, Article ID: 112306.
https://doi.org/10.1016/j.engstruct.2021.112306
[10]  Rao, G.V. (1995) Optimum Designs for Transmission Line Towers. Computers & Structures, 57, 81-92.
https://doi.org/10.1016/0045-7949(94)00597-V
[11]  Jovašević, S., Mohammadi, M.R.S., Rebelo, C., Pavlović, M. and Veljković, M. (2017) New Lattice-Tubular Tower for Onshore WEC—Part 1: Structural Optimization. Procedia Engineering, 199, 3236-3241.
https://doi.org/10.1016/j.proeng.2017.09.336
[12]  Zwick, D., Muskulus, M. and Moe, G. (2012) Iterative Optimization Approach for the Design of Full-Height Lattice Towers for Offshore Wind Turbines. Energy Procedia, 24, 297-304.
https://doi.org/10.1016/j.egypro.2012.06.112
[13]  Ceylon Electricity Board (CEB) (2014) Standard Construction Cost.
https://www.scribd.com/document/321119044/Standard-Cons
[14]  IEC (2003) Design Criteria for Overhead Transmission Lines. IEC Central Office, Geneva 20, Switzerland, 1-243.
www.iec.ch/online_news/justpub
[15]  (2015) Overhead Electrical Lines Exceeding AC 1 kV—Part 1: General Requirements—Common Specifications.
https://www.beuth.de/de/norm/nf-c11-241-1/245553193
[16]  Sébastien, B., Luis, C. and Michel G. (2020) Calcul géotechnique selon l’Eurocode 7 et ses normes d’application.
https://www.techniques-ingenieur.fr/base-documentaire/construction-et-travaux-publics-th3/calcul-et-suivi-d-ouvrages-geotechniques-42219210/calcul-geotechnique-selon-l-eurocode-7-et-ses-normes-d-application-c240/fondations-superficielles-norme-nf-p-94-261-c240v2niv10002.html

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133