全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低分辨率ADCs/DACs和低质量RF链技术辅助的D2D协助去蜂窝大规模MIMO系统
RF Impairments for D2D-Aided Cell-Free Massive MIMO with Low-Resolution ADCs/DACs

DOI: 10.12677/SEA.2024.131009, PP. 82-100

Keywords: 去蜂窝大规模MIMO,D2D,ADCs/DACs,RF,总速率,能量效率
Cell-Free Massive MIMO
, D2D, ADCs/DACs, RF, Sum Rate, Energy Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了有效地解决当前频谱资源稀缺的问题,同时满足未来对大规模的无线接入和高速率的急剧需求,本文提出了低分辨率模数转换(analog-to-digital converters, ADCs)/数模转换(digital-to-analog converters, ADCs)和低质量射频(radio frequency, RF)链技术辅助的终端直连(device-to-device, D2D)协助去蜂窝大规模多入多出(multiple-input multiple-output, MIMO)系统,通过D2D分担数据传输压力,低分辨率ADCs/DACs和低质量RF链技术可用于减少硬件开销,从而提升系统传输速率与能量效率。研究发现增加接入点(access points, APs) APs数量、AP天线数量和D2D用户(D2D user, DUE)天线数量可以有效地提升系统的总速率,当比特数等于16或质量因子等于1时,系统总速率和总能量效率达到最优。此外,增加DUEs密度可以极大地提升系统的性能。研究结果为未来去蜂窝大规模MIMO的实际部署提供了参考方案。
To effectively solve the problem of spectrum scarcity and meet the sharp demand for large-scale wireless access and high speed in the future, this paper proposes the radio frequency (RF) impairments for device-to-device (D2D)-aided cell-free massive multiple-input multiple-output (MIMO) with low-resolution analog-to-digital converters (ADCs)/digital-to-analog converters (DACs). Through D2D to share the data transmission pressure, low-resolution ADCs/DACs, and low-quality RF chain technology can reduce the hardware overhead, thereby improving the system transmission rate and energy efficiency. It is found that increasing the number of access points (APs), AP antennas, and D2D user (DUE) antennas can effectively improve the sum rate of the system. When bits = 16 or quality factor = 1, the system’s sum rate and energy efficiency are optimal. In addition, increasing the density of DUEs can greatly improve the system’s performance. The results provide a reference for the future deployment of cell-free massive MIMO.

References

[1]  Giordani, M., Polese, M., et al. (2020) Toward 6G Networks: Use Cases and Technologies. IEEE Communication Magazine, 58, 55-61.
https://doi.org/10.1109/MCOM.001.1900411
[2]  Wang, C.-X., You, X., et al. (2023) On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds. IEEE Communications Surveys & Tutorials, 25, 905-974.
https://doi.org/10.1109/COMST.2023.3249835
[3]  Ammar, H., Adve, A., Shahbazpanahi, R., Boudreau, S.G. and Srinivas, K.V. (2022) User-Centric Cell-Free Massive MIMO Networks: A Survey of Opportunities, Challenges and Solutions. IEEE Communications Surveys & Tutorials, 24, 611-652.
https://doi.org/10.1109/COMST.2021.3135119
[4]  Cao, H., Lin, Z., Yang, L., Wang, J. and Guizani, M. (2023) DT-SFC-6G: Digital Twins Assisted Service Function Chains in Softwarized 6G Networks for Emerging V2X. IEEE Network Magazine, 37, 289-296.
https://doi.org/10.1109/MNET.009.2300028
[5]  Ngo, H.Q., Ashikhmin, A., Yang, H., Larsson, E.G. and Marzetta, T.L. (2017) Cell-Free Massive MIMO versus Small Cells. IEEE Transactions on Wireless Communication, 16, 1834-1850.
https://doi.org/10.1109/TWC.2017.2655515
[6]  Demir, ?.T., Bj?rnson, E. and Sanguinetti, L. (2021) Foundations of User-Centric Cell-Free Massive MIMO. Foundations and Trends? in Signal Processing, 14, 162-472.
https://doi.org/10.1561/2000000109
[7]  Ngo, H.Q., Ashikhmin, A., Yang, H., Larsson, E.G. and Marzetta, T.L. (2015) Cell-Free Massive MIMO: Uniformly Great Service for Everyone. 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, 28 June-1 July 2015, 201-205.
https://doi.org/10.1109/SPAWC.2015.7227028
[8]  Ngo, H.Q., Tran, L.-N., Duong, T.Q., Matthaiou, M. and Larsson, E.G. (2018) On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Transactions on Green Communications and Networking, 2, 25-39.
https://doi.org/10.1109/TGCN.2017.2770215
[9]  Chen, Z. and Bj?rnson, E. (2018) Channel Hardening and Favorable Propagation in Cell-Free Massive MIMO with Stochastic Geometry. IEEE Transactions on Communications, 66(11, 5205-5219.
https://doi.org/10.1109/TCOMM.2018.2846272
[10]  Hu, X., Zhong, C., Chen, X., Xu, W., Lin, H. and Zhang, Z. (2019) Cell-Free Massive MIMO Systems with Low Resolution ADCs. IEEE Transactions on Communications, 67, 6844-6857.
https://doi.org/10.1109/TCOMM.2019.2927450
[11]  Zhou, M., Yang, L. and Zhu, H. (2021) Sum-SE for Multigroup Multicast Cell-Free Massive MIMO with Multi-Antenna Users and Low-Resolution DACs. IEEE Wireless Communications Letters, 10, 1702-1706.
https://doi.org/10.1109/LWC.2021.3077900
[12]  Femenias, G. and Riera-Palou, F. (2020) Fronthaul-Constrained Cell-Free Massive MIMO with Low Resolution ADCs. IEEE Access, 8, 116195-116215.
https://doi.org/10.1109/ACCESS.2020.3004499
[13]  Zhang, X., Liang, T., An, K., Yang, H. and Niu, C. (2022) Secure Transmission in RIS-Assisted Cell-Free Massive MIMO System with Low Resolution ADCs/DACs. 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, 10-13 April 2022, 339-344.
https://doi.org/10.1109/WCNC51071.2022.9771561
[14]  Anokye, P., Asiedu, D.K.P. and Lee, K.-J. (2023) Power Optimization of Cell-Free Massive MIMO with Full-Duplex and Low-Resolution ADCs. IEEE Transactions on Wireless Communications, 22, 6706-6723.
https://doi.org/10.1109/TWC.2023.3245082
[15]  Anokye, P., Ahiadormey, R.K. and Lee, K.-J. (2021) Full-Duplex Cell-Free Massive MIMO with Low-Resolution ADCs. IEEE Transactions on Vehicular Technology, 70, 12179-12184.
https://doi.org/10.1109/TVT.2021.3112212
[16]  Zhang, Y., Xia, W., Zheng, G., Zhao, H., Yang, L. and Zhu, H. (2022) Secure Transmission in Cell-Free Massive MIMO with Low-Resolution DACs over Rician Fading Channels. IEEE Transactions on Communications, 70, 2606-2621.
https://doi.org/10.1109/TCOMM.2022.3147241
[17]  Xiong, Y., Sun, S., Liu, L., Mao, S., Zhang, Z. and Wei, N. (2023) Performance Analysis of Cell-Free Massive MIMO Network with Large-Scale-Fading Decoding and Low-Resolution ADCs. IEEE Transactions on Vehicular Technology, 72, 13723-13728.
https://doi.org/10.1109/TVT.2023.3276899
[18]  Zhang, J. and Ai, B. (2020) Cell-Free Massive MIMO with Low-Resolution ADCs over Spatially Correlated Channels. ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, 7-11 June 2020, 1-7.
https://doi.org/10.1109/ICC40277.2020.9148882
[19]  Zhou, M., Zhang, Y., Qiao, X. and Yang, L. (2020) Spatially Correlated Rayleigh Fading for Cell-Free Massive MIMO Systems. IEEE Access, 8, 42154-42168.
https://doi.org/10.1109/ACCESS.2020.2976672
[20]  Liu, Z., Zhang, J., Wang, Z., Zhang, X., Xiao, H. and Ai, B. (2023) Cell-Free Massive MIMO with Mixed-Resolution ADCs and I/Q Imbalance over Rician Spatially Correlated Channels. IEEE Transactions on Vehicular Technology, 72, 9567-9572.
https://doi.org/10.1109/TVT.2023.3244940
[21]  Takahashi, T., Iimori, H., Ando, K., Ishibashi, K., Ibi, S. and de Abreu, G.T.F. (2023) Bayesian Receiver Design via Bilinear Inference for Cell-Free Massive MIMO with Low-Resolution ADCs. IEEE Transactions on Wireless Communications, 22, 4756-4772.
https://doi.org/10.1109/TWC.2022.3228326
[22]  Masoumi, H., Emadi, M.J. and Buzzi, S. (2022) Coexistence of D2D Communications and Cell-Free Massive MIMO Systems with Low Resolution ADC for Improved Throughput in Beyond-5G Networks. IEEE Transactions on Communications, 70, 999-1013.
https://doi.org/10.1109/TCOMM.2021.3129928
[23]  Qiao, X., Zhang, Y., Zhou, M., Yang, L. and Zhu, H. (2022) Downlink Achievable Rate of D2D Underlaid Cell-Free Massive MIMO Systems with Low-Resolution DACs. IEEE Systems Journal, 16, 3855-3866.
https://doi.org/10.1109/JSYST.2021.3098926
[24]  Xu, L., Lu, X., Jin, S., Gao, F. and Zhu, Y. (2019) On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments. IEEE Communications Letters, 23, 502-505.
https://doi.org/10.1109/LCOMM.2019.2895823
[25]  Zhang, Y., Zhou, M., Cheng, Y., Yang, L. and Zhu, H. (2021) RF Impairments and Low-Resolution ADCs for Nonideal Uplink Cell-Free Massive MIMO Systems. IEEE Systems Journal, 15, 2519-2530.
https://doi.org/10.1109/JSYST.2020.2990709
[26]  Zhang, X., Liang, T., An, K., Zheng, G. and Chatzinotas, S. (2021) Secure Transmission in Cell-Free Massive MIMO with RF Impairments and Low-Resolution ADCs/DACs. IEEE Transactions on Vehicular Technology, 70, 8937-8949.
https://doi.org/10.1109/TVT.2021.3098693
[27]  Dey, S. and Budhiraja, R. (2020) FD Cell-Free Massive MIMO Systems with Downlink Pilots: Analysis and Optimization. IEEE Transactions on Communications, 70, 7591-7608.
https://doi.org/10.1109/TCOMM.2022.3204833

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133