|
复杂环境地铁隧道数字孪生系统的研究
|
Abstract:
为降低地铁隧道因各项病害而产生的结构安全性风险,本研究以数字孪生技术为基础,构建地铁隧道的智能化管理系统平台。通过设计隧道无人巡检车,实现对隧道的智能巡检,并通过大数据分析及时获取和处理隧道的病害与形变信息。结合神经网络和机器学习的方法,采用Transformer模型实现对隧道沉降的精准预测。在综合考虑地铁隧道环境智能重构、数据互联、感知交互、业务协作等共性支撑技术的基础上,本研究构建了地铁隧道全节点、多维度实景数字孪生系统。该系统能够实现隧道的智能巡检、故障诊断、沉降预测、智能交互和三维展示,从而显著提高地铁隧道的安全管理和设备维护效率。
To mitigate the structural safety risks arising from various ailments in subway tunnels, this study leverages digital twin technology to establish an intelligent management system platform for subway tunnels. Through the design of an unmanned tunnel inspection vehicle, intelligent inspections of the tunnel are achieved. The study utilizes large-scale data analysis to promptly acquire and process information related to defects and deformations within the tunnel. By employing neural networks and machine learning methodologies, the Transformer model is utilized to achieve precise predictions of subsidence within the tunnel. Integrating various common supporting technologies, such as intelligent reconstruction of the subway tunnel environment, seamless data interconnection, perceptual interaction, and collaborative business strategies, this research establishes a subway tunnel full-node, multi-dimensional real-scene digital twin system. This system facilitates intelligent inspections, fault diagnosis, accurate subsidence predictions, intelligent interaction, and three-dimensional displays within the tunnel. Consequently, it significantly enhances the safety management and equipment maintenance efficiency of subway tunnels.
[1] | 梁亚成, 虞赛君, 马迪迪, 等. 基于数字孪生的隧道智能巡检技术研究与应用[J]. 北京测绘, 2022, 36(7): 870-874. |
[2] | Schroeder, G.N., Steinmetz, C., Pereira, C.E., et al. (2016) Digital Twin Data Modeling with Automationml and a Communication Methodology for Data Exchange. IFAC-PapersOnLine, 49, 12-17.
https://doi.org/10.1016/j.ifacol.2016.11.115 |
[3] | 郭鸿雁, 梁肖, 李科等. 基于机器视觉的隧道表观病害监测技术研究[J]. 地下空间与工程学报, 2023, 19(5): 1633-1645+1664. |
[4] | 汪玚. 闫自海. 数字孪生赋能隧道养管[J]. 交通建设与管理, 2021(3): 28-29. |
[5] | 朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报, 2022, 51(6): 1040-1049. |
[6] | 徐永祥. 城市主干路隧道段智慧化系统研究应用[J]. 城市道桥与防洪, 2023(8): 284-288+27. |
[7] | Zhang, L. and Lu, H. (2021) Discussing Digital Twin from of Modeling and Simulation. Journal of System Simulation, 33, 995-1007. |
[8] | 智鹏, 解亚龙, 史天运. 隧道工程数字信息化施工关键技术及应用[J]. 铁道标准设计, 2022, 66(10): 112-116. |
[9] | 梁策, 马娟, 朱军, 等. 钻爆法施工隧道数字孪生系统构建方法[J/OL]. 铁道标准设计, 1-8.
https://kns.cnki.net/kcms2/article/abstract?v=1TlORdBtwpZf6k3-xUHtLg_eP-MoBZapyTD3dcQPagREOzPSbQATf2m_mGHfepBLPd4f00D_0aA8qTNrUgqIZbzroXRhZoDlqw3kp9_FhFyYRtE65jGi-ijQl9BK0zQm5hGawlj37Fs=&uniplatform=NZKPT&language=CHS, 2023-07-06. |
[10] | 韩伟, 段文岩, 杜兴伟, 等. 基于数字孪生的在运安控系统故障诊断方法[J]. 中国电力, 2023, 56(11): 121-127. |
[11] | 梁策, 刘红良, 王燕等. 面向竣工交付的数字孪生铁路系统建设和应用[C]//中国智能交通协会. 第十六届中国智能交通年会科技论文集. 中国铁道科学研究院集团有限公司电子计算技术研究所, 北京经纬信息技术有限公司, 2021: 8. |
[12] | 姬莉霞, 张庆开, 周洪鑫, 等. 基于深度学习的集群系统故障预测方法[J/OL]. 郑州大学学报(理学版), 1-9.
https://kns.cnki.net/kcms2/article/abstract?v=1TlORdBtwpaTLZUGCKYeeVi7upgaiK7RBp2JNgkoMM2XX_bEoBY8zu4zPOc4U_pqnTBCSkYx6cwTywibrWbITOWRicUUQCuBFp33X9brnuR51kjk3szfieMEv4H_FA5ajC8ITK8bBTA=&uniplatform=NZKPT&language=CHS, 2023-12-16. |
[13] | 刘玉鑫. 基于图像处理的钢轨剥离掉块和扣件缺损状态检测研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2018. |
[14] | Huang, H., Sun, Y., Xue, Y., et al. (2017) Inspection Equipment Study for Subway Tunnel Defects by Grey-Scale Image Processing. Advanced Engineering Informatics, 32, 188-201. https://doi.org/10.1016/j.aei.2017.03.003 |
[15] | Mi, S., Feng, Y., Zheng, H., et al. (2021) Prediction Maintenance Integrated Decision-Making Approach Supported by Digital Twin-Driven Cooperative Awareness and Interconnection Framework. Journal of Manufacturing Systems, 58, 329-345. https://doi.org/10.1016/j.jmsy.2020.08.001 |
[16] | 宫思艺. 基于数字孪生的盾构施工地面沉降智能分析方法研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2020. |
[17] | 孟飞飞, 宋卫锋, 叶桃梅. 地铁隧道沉降组合预测模型[J].测绘标准化, 2022, 38(3): 52-56. |
[18] | 林菲菲. 基于LSTM网络的地铁隧道运营期间沉降预测研究[J]. 广东土木与建筑, 2022, 29(10): 45-48. |