全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

F1Fo ATP合酶作为抗真菌药物靶点的研究进展
Progress of F1Fo ATP Synthase as an Antifungal Drug Target

DOI: 10.12677/AMB.2024.131003, PP. 28-34

Keywords: 侵袭性真菌,F1Fo ATP合酶,药物靶点,抗真菌药物,亚基
Invasive Fungi
, F1Fo ATP Synthase, Drug Targets, Antifungal Drugs, Subunits

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着肿瘤化疗、免疫抑制剂及广谱抗菌药物的广泛使用,侵袭性真菌感染的发病率和死亡率在全球呈明显上升趋势,真菌感染已成为严重威胁公共卫生健康的病原体之一。2022年世界卫生组织(WHO)公布的真菌重点病原体清单,也进一步强调了真菌对人类的危害已经达到了危机点,必须引起全球范围内的高度重视。目前临床抗真菌药物种类有限、随之耐药性的产生,因此,寻找新的抗真菌药物靶点尤为重要。F1Fo ATP合酶,作为药物理想分子靶标,一直以来都是研究的热点。随着F1Fo ATP合酶亚基作用机制明了,表明F1Fo ATP合酶作为抗真菌药物靶点的巨大潜力。在此,我们收集整理近年来关于F1Fo ATP合酶的研究成果,从ATP合酶的各亚基展开,进而阐述各亚基的结构功能以及机制,综述各亚基作为靶点的潜在可能性,为抗真菌药物靶点的研究提供参考。
In recent years, with the widespread use of tumor chemotherapy, immunosuppressants and broad-spectrum antimicrobial drugs, the morbidity and mortality of invasive fungal infections have shown a significant upward trend globally, and fungal infections have become one of the pathogens that pose a serious threat to public health. The list of fungal priority pathogens published by the World Health Organization (WHO) in 2022 has also further emphasized the fact that the danger of fungi to human beings has reached a crisis point and must be given high priority globally. The limited availability of clinical antifungal drugs and the consequent emergence of drug resistance have made the search for new antifungal drug targets particularly important, and F1Fo ATP synthase, as an ideal molecular target for drug discovery, has long been a hot research topic. With the clarification of the mechanism of action of the F1Fo ATP synthase subunit, it has been shown that F1Fo ATP synthase has great potential as an antifungal drug target. Here, we collect and organize the research results on F1Fo ATP synthase in recent years, start from the subunits of ATP synthase, and then elaborate the structure, function, and mechanism of each subunit, and review the potential of each subunit as a target, so as to provide a reference for the research of antifungal drug targets.

References

[1]  邢文慧, 喻红梅, 房政钰, 龚宁波, 吕扬. 氮唑类抗真菌药物多晶型与共晶研究进展[J]. 医药导报, 2022, 41(5): 649-655.
[2]  曾芳芳, 刘颖. 棘白菌素类抗真菌药不良反应文献分析[J]. 国外医药: 抗生素分册, 2023, 44(2): 123-126.
[3]  徐贝雪, 刘泉波. 抗真菌药物临床应用及研究进展[J]. 现代医药卫生, 2022, 38(14): 2435-2440.
[4]  覃启剑, 房文霞. 真菌感染防控及真菌细胞壁靶标的研究进展[J]. 广西科学院学报, 2023, 39(3): 213-222.
[5]  郭颖强, 张玉勤, 苟世宁. 抗真菌药物临床应用机制及发展趋势[J]. 中国食用医学, 2010, 5(35): 235-236.
[6]  张兴. γ-AA模拟肽抗真菌活性评价及作用机制研究和其他研究[D]: [硕士学位论文]. 重庆: 西南大学, 2023.
[7]  柴双. 基于FDA不良事件报告系统对五种三唑类抗真菌药物的安全性评价[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2023.
[8]  杨光影, 赵彤, 田静涵, 翁俊, 曾小美. 酵母线粒体ATP合酶生物合成及组装机制研究进展[J]. 菌物学报, 2018, 37(11): 1424-1440.
[9]  Lai, Y., Zhang, Y., Zhou, S., Xu, J., Du, Z., Feng, Z., et al. (2023) Structure of The human ATP Synthase. Molecular Cell, 83, 2137-2147.E4.
https://doi.org/10.1016/j.molcel.2023.04.029
[10]  Artika, I.M. (2019) Current Understanding of Structure, Function and Biogenesis of Yeast Mitochondrial ATP Synthase. Journal of Bioenergetics and Biomembranes, 51, 315-328.
https://doi.org/10.1007/s10863-019-09809-4
[11]  吴昊天. ATP1基因在白念珠菌致病力中的作用及其机制的初步研究[D]: [硕士学位论文]. 广州: 暨南大学, 2018.
[12]  Li, S., Liu, Y., Weng, L., Zhao, Y., et al. (2023) The FF-ATP Synthase α Subunit of Candida albicans Induces Inflammatory Responses by Controlling Amino Acid Catabolism. Virulence, 14, Article ID: 2190645.
https://doi.org/10.1080/21505594.2023.2190645
[13]  Abdulghani, M., Telang, S., Desai, M., Kadam, S., et al. (2023) Opaque Cell-Specific Proteome of Candida albicans ATCC 10231. Medical Mycology, 61, myad062.
https://doi.org/10.1093/mmy/myad062
[14]  He, P., Xiao, G., Liu, H., Zhang, L., Zhao, L., et al. (2018) Two Pivotal RNA Editing Sites in the Mitochondrial atp1mRNA Are Required for ATP Synthase to Produce Sufficient ATP for Cotton Fiber Cell Elongation. New Phytologist, 218, 167-182.
https://doi.org/10.1111/nph.14999
[15]  Chateigner-Boutin, A.L. and Small, I. (2011) Organellar RNA Editing. WIREs RNA, 2, 493-506.
https://doi.org/10.1002/wrna.72
[16]  唐川燕. 基于白念珠菌F1Fo-ATP合酶β亚基结构的小分子虚拟筛选与活性验证[D]: [硕士学位论文]. 广州: 暨南大学, 2022.
[17]  李水秀. 白念珠菌F1Fo-ATP合酶β亚基参与小鼠致死性感染及其机制研究[D]: [博士学位论文]. 广州: 暨南大学, 2018.
[18]  Li, S.X., Wu, H.T., Liu, Y.T., Jiang, Y.Y., Zhang, Y.S., Liu, W.D., et al. (2018) The F1Fo-ATP Synthase β Subunit Is Required for Candida albicans Pathogenicity Due to Its Role in Carbon Flexibility. Frontiers in Microbiology, 9, Article 1025.
https://doi.org/10.3389/fmicb.2018.01025
[19]  Neupane, P., Bhuju, S., Thapa, N. and Bhattarai, H.K. (2019) ATP Synthase: Structure, Function and Inhibition. Biomolecular Concepts, 10, 1-10.
https://doi.org/10.1515/bmc-2019-0001
[20]  李水秀, 张宏. F1Fo-ATP合酶δ亚基对白念珠菌致病以及通过调节多阶段致病因子的机制研究[C]//中国菌物学会. 中国菌物学会2018年学术年会论文汇编. 2018: 1.
[21]  Reinders, J., Wagner, K., Zahedi, R.P., Stojanovski, D., Eyrich, B., et al. (2007) Profiling Phosphoproteins of Yeast Mitochondria Reveals a Role of Phosphorylation in Assembly of the ATP Synthase. Molecular & Cellular Proteomics, 6, 1896-1906.
https://doi.org/10.1074/mcp.M700098-MCP200
[22]  Mayr, J.A., Havlícková, V., Zimmermann, F., Magler, I., Kaplanová, V., Jesina, P., et al. (2010) Mitochondrial ATP Synthase Deficiency Due to a Mutation in the ATP5E Gene for the F1 Epsilon Subunit. Human Molecular Genetics, 19, 3430-3439.
https://doi.org/10.1093/hmg/ddq254
[23]  Havlícková, V., Kaplanová, V., N?sková, H., Drahota, Z. and Houstek, J. (2010) Knockdown of F1 Epsilon Subunit Decreases Mitochondrial Content of ATP Synthase and Leads to Accumulation of Subunit c. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1797, 1124-1129.
https://doi.org/10.1016/j.bbabio.2009.12.009
[24]  Lai-Zhang, J. and Mueller, D.M. (2000) Complementation of Deletion Mutants in the Genes Encoding the F1-ATPase by Expression of the Corresponding Bovine Subunits in Yeast S. cerevisiae. European Journal of Biochemistry, 267, 2409-2418.
https://doi.org/10.1046/j.1432-1327.2000.01253.x
[25]  Yoshida, Y., Sato, T., Hashimoto, T., Ichikawa, N., Nakai, S., et al. (1990) Isolation of a Gene for a Regulatory 15-kDa Subunit of Mitochondrial F1F0-ATPase and Construction of Mutant Yeast Lacking the Protein. European Journal of Biochemistry, 192, 49-53.
https://doi.org/10.1111/j.1432-1033.1990.tb19193.x
[26]  Ichikawa, N., Karaki, A., Kawabata, M., Ushida, S., Mizushima, M. and Hashimoto, T. (2001) The Region from Phenylalanine-17 to Phenylalanine-28 of a Yeast Mitochondrial ATPase Inhibitor Is Essential for Its ATPase Inhibitory Activity. The Journal of Biochemistry, 130, 687-693.
https://doi.org/10.1093/oxfordjournals.jbchem.a003035
[27]  Dienhart, M., Pfeiffer, K., Schagger, H. and Stuart, R.A. (2002) Formation of the Yeast F1FO-ATP Synthase Dimeric Complex Does Not Require the ATPase Inhibitor Protein, Inh1. Journal of Biological Chemistry, 277, 39289-39295.
https://doi.org/10.1074/jbc.M205720200
[28]  Faccenda, D. and Campanella, M. (2012) Molecular Regulation of the Mitochondrial F1F0-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF1). International Journal of Cell Biology, 2012, Article ID: 367934.
https://doi.org/10.1155/2012/367934
[29]  Hashimoto, T., Yoshida, Y. and Tagawa, K. (1990) Simultaneous Bindings of ATPase Inhibitor and 9K Protein to F1F0-ATPase in the Presence of 15K Protein in Yeast Mitochondria. The Journal of Biochemistry, 108, 17-20.
https://doi.org/10.1093/oxfordjournals.jbchem.a123154
[30]  Ichikawa, N., Ando, C. and Fumino, M. (2006) Caenorhabditis elegans MAI-1 Protein, Which Is Similar to Mitochondrial ATPase Inhibitor (IF1), Can Inhibit Yeast F0F1-ATPase but Cannot Be Transported to Yeast Mitochondria. Journal of Bioenergetics and Biomembranes, 38, 93-99.
https://doi.org/10.1007/s10863-006-9009-2
[31]  Vaillier, J., Arselin, G., Graves, P.V., Camougrand, N. and Velours, J. (1999) Isolation of Supernumerary Yeast ATP Synthase Subunits e and i. Characterization of Subunit i and Disruption of Its Structural Gene ATP18. Journal of Biological Chemistry, 274, 543-548.
https://doi.org/10.1074/jbc.274.1.543
[32]  Wagner, K., Perschil, I., Fichter, C.D. and van der Laan, M. (2010) Stepwise Assembly of Dimeric F1Fo-ATP Synthase in Mitochondria Involves the Small Fo-Subunits k and i. Molecular Biology of the Cell, 21, 1435-1643.
https://doi.org/10.1091/mbc.e09-12-1023
[33]  吕妍. 白念珠菌F1Fo-ATP合酶i/j亚基和k亚基在小鼠致死性感染中的作用研究[D]: [硕士学位论文]. 广州: 暨南大学, 2020.
[34]  范海鸣, 刘艳霞. 线粒体ATP合酶中寡霉素敏感相关蛋白的研究进展[J]. 中国药学杂志, 2008, 43(9): 641-643.
[35]  Everard-Gigot, V., Dunn, C.D., Dolan, B.M., Brunner, S., Jensen, R.E. and Stuart, R.A. (2005) Functional Analysis of Subunit e of the F1Fo-ATP Synthase of the Yeast Saccharomyces cerevisiae: Importance of the N-Terminal Membrane anchor Region. Eukaryotic Cell, 4, 346-355.
https://doi.org/10.1128/EC.4.2.346-355.2005
[36]  Wagner, K., Rehling, P., Sanjuán Szklarz, L.K., et al. (2009) Mitochondrial F1Fo-ATP Synthase: The Small Subunits e and g Associate with Monomeric Complexes to Trigger Dimerization. Journal of Molecular Biology, 392, 855-861.
https://doi.org/10.1016/j.jmb.2009.07.059
[37]  Hong, S. and Pedersen, P.L. (2003) Subunit E of mitochondrial ATP Synthase: A Bioinformatic Analysis Reveals a Phosphopeptide Binding Motif Supporting a Multifunctional Regulatory Role and Identifies a Related Human Brain Protein with the Same Motif. Proteins, 51, 155-161.
https://doi.org/10.1002/prot.10318
[38]  Lytovchenko, O., Naumenko, N., Oeljeklaus, S., Schmidt, B., von der Malsburg, K., Deckers, M., et al. (2014) The INA Complex Facilitates Assembly of the Peripheral Stalk of the Mitochondrial F1Fo-ATP Synthase. The EMBO Journal, 33, 1624-1638.
https://doi.org/10.15252/embj.201488076

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133