全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于掺铒光纤作为可饱和吸收体的窄线宽光纤激光器研究
Research on Narrow Linewidth Fiber Laser Based on Erbium Doped Fiber as Saturable Absorber

DOI: 10.12677/app.2024.144019, PP. 157-165

Keywords: 光纤激光器,窄线宽,动态光栅,可饱和吸收体
Fiber Laser
, Narrow Linewidth, Dynamic Grating, Saturable Absorber

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文介绍了一种以未泵浦的掺铒光纤作为可饱和吸收体,通过3 dB耦合器及环形器,构成一个由驻波效应形成动态光栅的一种窄线宽光纤激光器。测得在中心波长在1559.54 nm处得到输出的激光器,在泵浦功率为150 mW以下时可以保持长时间的稳定工作,泵浦功率为70 mW,输出光功率为17.03 mW,斜率效率为30.73%,光学信噪比为39 dB,波长分辨率的不稳定性小于0.03 nm,光学信噪比的波动小于0.16 dB,从0到1 MHz的37.5 kHz信号频谱中的弛豫振荡频率峰值为?89.6 dB/Hz。通过延时自外差法测量线宽为1.99 kHz。
This article introduces a narrow linewidth fiber laser that uses an unpumped erbium-doped fiber as a saturable absorber and a 3 dB coupler and circulator to form a dynamic grating formed by the standing wave effect. The laser output obtained at the center wavelength of 1559.54 nm can maintain stable operation for a long time when the pump power is below 150 mW. The pump power is 70 mW, the output optical power is 17.03 mW, the slope efficiency is 30.73%, the optical signal-to-noise ratio is 39 dB, the wavelength resolution instability is less than 0.03 nm, the fluctuation of the optical signal-to-noise ratio is less than 0.16 dB, and the peak relaxation oscillation frequency in the 37.5 kHz signal spectrum from 0 to 1 MHz is ?89.6 dB/Hz. The line width was measured to be 1.99 kHz using the delayed self heterodyne method.

References

[1]  马传刚. 激光焊接、切割在汽车制造中的应用研究[J]. 时代农机, 2016, 43(4): 29-31.
[2]  Tang, L., Shang, J., Wang, Z, et al. (2019) Gourd-Shaped Subring Resonator-Based Single Longitudinal Mode Erbium-Doped Fiber Laser. Optical Engineering, 58, Article ID: 066110.
https://doi.org/10.1117/1.OE.58.6.066110
[3]  Wang, J., Zhu, R., Zhou, J., et al. (2011) Conductively Cooled 1-kHz Single-Frequency Nd:YAG Laser for Remote Sensing. Chinese Optics Letters, 9, Article ID: 081405.
https://doi.org/10.3788/COL201109.081405
[4]  Chen, H. (2004) Dynamics of Widely Tunable Single-Frequency Semiconductor Fiber Ring Laser. Physics Letters A, 320, 333-337.
https://doi.org/10.1016/j.physleta.2003.11.038
[5]  Yeh, C.-H. and Chi, S. (2005) A Wavelength-Tunable Erbium-Doped Fiber Double-Ring Laser with Stabilized Single-Frequency Operation. Japanese Journal of Applied Physics, 44, 5003-5005.
https://doi.org/10.1143/JJAP.44.5003
[6]  Liegeois, F., Hernandez, Y., Peigne, G., Roy, F. and Hamoir, D. (2005) Highefficiency, Single-Longitudinal-Mode Ring Fibre Laser. Electronics Letters, 41, 729-730.
https://doi.org/10.1049/el:20050496
[7]  Lee, C.-C., Chen, Y.-K. and Liaw, S.-K. (1998) Single-Longitudinal-Mode Fiber Laser with a Passive Multiple-Ring Cavity and Its Application for Video Transmission. Optics Letters, 23, 358-360.
https://doi.org/10.1364/OL.23.000358
[8]  Liu, J., Yao, J., Yao, J. and Yeap, T.H. (2004) Single-Longitudinal-Mode Multiwavelength Fiber Ring Laser. IEEE Photonics Technology Letters, 16, 1020-1022.
https://doi.org/10.1109/LPT.2004.824975
[9]  Stepanov, S. and Sánchez, M.P. (2011) Amplitude of the Dynamic Phase Gratings in Saturable Er-Doped Fibers. Applied Physics B, 102, 601-606.
https://doi.org/10.1007/s00340-010-4246-9
[10]  Stepanov, S. and Hernández, E.H. (2007) Phase Contribution to Dynamic Gratings Recorded in Er-Doped Fiber with Saturable Absorption. Optics Communications, 271, 91-95.
https://doi.org/10.1016/j.optcom.2006.09.044
[11]  He, X., Xu, S.H., Li, C., Yang, C.S., Yang, Q., Mo, S.P., Chen, D.D. and Yang, Z.M. (2013) 1.95 μm kHz-Linewidth Single-Frequency Fiber Laser Using Self-Developed Heavily Tm3 -doped Germanate Glass Fiber. Optics Express, 21, 20800-20805.
https://doi.org/10.1364/OE.21.020800
[12]  Le, B.L., Tao, J.B., Jin, K., et al. (2017) High-Stability Broadband Wavelength-Tunable Single-Frequency Ytterbium-Doped All-Fiber Compound Ring Cavity. IEEE Photonics Journal, 9, 1-8.
https://doi.org/10.1109/JPHOT.2017.2657747
[13]  Poozesh, R., Madanipour, K. and Parvin, P. (2018) High SNR Watt-Level Single Frequency Yb-Doped Fiber Laser Based on a Saturable Absorber Filter in a Cladding-Pumped Ring Cavity. Journal of Lightwave Technology, 36, 4880-4886.
https://doi.org/10.1109/JLT.2018.2866472
[14]  Wang, K.L., Wen, Z.R, Chen, H.W., et al. (2020) Observation of Reverse Self-Sweeping Effect in an All-Polarization-Maintaining Bidirectional Ytterbium-Doped Fiber Laser. Optics Express, 28, 13913-13920.
https://doi.org/10.1364/OE.392903
[15]  熊水东, 徐攀. 掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究[J]. 物理学报, 2014, 63(13): 134206.
[16]  Wang, T., Zhang, L., Feng, C., Qin, M. and Zhan, L. (2016) Tunable Bistability in Hybrid Brillouin-Erbium Single-Frequency Fiber Laser with Saturable Absorber. Journal of the Optical Society of America B, 33, 1635-1639.
https://doi.org/10.1364/JOSAB.33.001635
[17]  Xu, S., Yang, Z., Zhang, W., Wei, X., Qian, Q., Chen, D., Zhang, Q., Shen, S., Peng, M. and Qiu, J. (2011) 400 mW Ultrashort Cavity Low-Noise Single-Frequency Yb3 -doped Phosphate Fiber Laser. Optics Letters, 36, 3708-3710.
https://doi.org/10.1364/OL.36.003708
[18]  Pan, S. and Yao, J. (2009) Frequency-Switchable Microwave Generation Based on a Dual-Wavelength Single-Longitudinal-Mode Fiber Laser Incorporating a High-Finesse Ring Filter. Optics Express, 17, 12167-12173.
https://doi.org/10.1364/OE.17.012167
[19]  Okoshi, T., Kikuchi, K. and Nakayama, A. (2007) Novel Method for High Resolution Measurement of Laser Output Spectrum. Electronics Letters, 16, 630-631.
https://doi.org/10.1049/el:19800437

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133