|
基于U-Net的一维大地电磁反演方法
|
Abstract:
大地电磁法在地球物理勘探中扮演着关键的角色,能够通过地表观测数据反演地出下电性结构的分布。然而,传统的大地电磁反演方法存在一些明显的缺点,例如对初始模型的依赖性以及反演过程中较高的计算消耗。为了解决这些问题,文章提出了一种基于深度学习的反演方法。该方法利用神经网络出色的非线性拟合能力,借助构建的大量样本集,实现了对大地电磁数据的一维演。这种方法不仅能够克服传统反演方法的缺陷,还能够通过大规模样本的学习提高反演的准确性和效率。在网络训练完成后,本文对提出的方法进行了详细验证,证明了方法的可靠性和稳健性。
The magnetotelluric method plays a key role in geophysical exploration, allowing for the inversion of subsurface electrical structures based on surface observation data. However, traditional magnetotelluric inversion methods have some obvious drawbacks, such as reliance on initial models and high computational costs. To address these issues, this paper proposes a deep learning based inversion method. This method utilizes the excellent nonlinear fitting capability of neural networks and, with the aid of a large sample set, achieves one-dimensional inversion of magnetotelluric data. This approach not only overcomes the shortcomings of traditional inversion methods but also improves inversion accuracy and efficiency through learning from a large number of samples. After completing network training, this paper conducts detailed validation of the proposed method, demonstrating its reliability and robustness.
[1] | 底青云, 薛国强, 殷长春, 等. 中国人工源电磁探测新方法[J]. 中国科学(地球科学), 2020, 50(9): 1219-1227. |
[2] | 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6): 2128-2138. |
[3] | 刘云鹤, 殷长春, 蔡晶, 等. 电磁勘探中各向异性研究现状和展望[J]. 地球物理学报, 2018, 61(8): 3468-3487. |
[4] | 李帝铨, 王光杰, 底青云, 等. 基于遗传算法的CSAMT最小构造反演[J]. 地球物理学报, 2008, 51(4): 1234-1245. |
[5] | Wang, K.P., Tan, H.D., Lin, C.H., et al. (2017) Three-Dimensional Tensor Controlled-Source Audio-Frequency Magnetotelluric Inversion Using LBFGS. Exploration Geophysics, 49, 268-284. https://doi.org/10.1071/EG16079 |
[6] | Caldwell, T.G., Bibby, H.M. and Brown, C. (2004) The Magnetotelluric Phase Tensor. Geophysical Journal International, 158, 457-469. https://doi.org/10.1111/j.1365-246X.2004.02281.x |
[7] | 王本锋, 韩东, 李家阔. 基于扩张卷积的智能化规则缺失炮插值重建方法[J]. 地球物理学报, 2022, 65(6): 2226-2243. |
[8] | 徐志敏, 辛会翠, 李晋, 等. 柴达木盆地大柴旦地区盆地中新生代演化机制电性特征分析[J]. 地质学报, 2019, 93(12): 3282-3298. |
[9] | 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学(地球科学), 2020, 50(3): 432-435. |
[10] | 翁爱华, 刘云鹤, 贾定宇, 等. 地面可控源频率测深三维非线性共轭梯度反演[J]. 地球物理学报, 2012, 55(10): 3506-3515. |
[11] | 师学明, 王家映. 一维层状介质大地电磁模拟退火反演法[J]. 地球科学, 1998, 23(5): 108-111. |
[12] | 尹彬, 胡祥云. 非线性反演的贝叶斯方法研究综述[J]. 地球物理学进展, 2016, 31(3): 1027-1032. |
[13] | Wang, H., Liu, Y.H., Yin, C., et al. (2023) Flexible and Accurate Prior Model Construction Based on Deep Learning for 2-D Magnetotelluric Data Inversion. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-11. https://doi.org/10.1109/TGRS.2023.3239105 |
[14] | 范涛, 薛国强, 李萍, 等. 瞬变电磁长短时记忆网络深度学习实时反演方法[J]. 地球物理学报, 2022, 65(9): 3650-3663. |
[15] | Liu, W., Wang, H., Xi, Z., et al. (2022) Physics-Driven Deep Learning Inversion with Application to Magnetotelluric. Remote Sensing, 14, Article 3218. https://doi.org/10.3390/rs14133218 |
[16] | Li, J., Liu, Y., Yin, C., et al. (2020) Fast Imaging of Time-Domain Airborne EM Data Using Deep Learning Technology. Geophysics, 85, E163-E170. https://doi.org/10.1190/geo2019-0015.1 |