|
Mine Engineering 2024
采动诱发大采高工作面断层活化失稳机理及预测模型
|
Abstract:
针对大采高工作面开采过逆断层过程中断层活化诱发煤岩冲击失稳灾害问题,采用数值模拟软件FLAC3D构建数值模型,对比分析了不同采高条件下采动作用对断层活化的影响,探讨了断层活化失稳过程中的应力场及位移场变化规律,基于加卸载响应比理论对模拟结果进行了分析,探讨了断层失稳的判定准则。研究结果表明:随着采高的增大,开采过程中更早出现断层活化,煤岩发生冲击失稳的风险增加。采动过程中,断层面上的剪应力呈现先缓慢增长后加速增长再突降的趋势,正应力呈现先缓慢上升后逐渐下降最终急剧下降的趋势。引入加卸载响应比,分析采动作用对断层的加卸载作用,形成了基于加卸载响应比的断层活化失稳预测方法和评价指标。研究成果能为大采高工作面的安全开采提供一定的理论支持。
In response to the problem of coal and rock impact instability caused by fault activation during the process of mining through reverse fault in mining face with large cutting height, a numerical simulation software FLAC3D was used to construct a numerical model. The influence of mining on fault activation under different mining heights was compared and analyzed, and the changes in stress and displacement fields during the process of the activation and instability of the fault were discussed. Based on the theory of loading/unloading response ratio, the simulation results were analyzed and the criteria for determining fault instability were explored. The research results indicate that as the mining height increases, the degree of fault activation intensifies, and fault activation occurs earlier during the mining process, increasing the risk of coal and rock impact instability. During the mining process, the shear stress on the fault plane shows a trend of slow growth, accelerated growth, and then sudden decrease, while the normal stress shows a trend of slow rise, gradual decrease, and finally sharp decrease. By introducing the loading/unloading response ratio, the loading and unloading effects of mining on faults were analyzed, A fault activation instability prediction method and evaluation index based on loading/unloading response ratio have been developed. The research results can provide certain theoretical support for the safe mining of the mining face with large cutting height.
[1] | 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(8): 2091-2098. |
[2] | 宋义敏, 马少鹏, 杨小彬, 等. 断层黏滑动态变形过程的实验研究[J]. 地球物理学报, 2012, 55(1): 171-179. |
[3] | 李鹏, 蔡美峰, 郭奇峰, 等. 煤矿断层错动型冲击地压研究现状与发展趋势[J]. 哈尔滨工业大学学报, 2018, 50(3): 1-17. |
[4] | Wang, J.A. and Park, H.D. (2001) Comprehensive Prediction of Rockburst Based on Analysis of Strain Energy in Rocks. Tunnelling and Underground Space Technology, 16, 49-57. https://doi.org/10.1016/S0886-7798(01)00030-X |
[5] | Sainoki, A. and Mitri, H.S. (2015) Effect of Slip-Weakening Distance on Selected Seismic Source Parameters of Mining-Induced Fault-Slip. International Journal of Rock Mechanics and Mining Sciences, 73, 115-122. https://doi.org/10.1016/j.ijrmms.2014.09.019 |
[6] | 蔡武, 窦林名, 司光耀, 等. 煤矿开采动静载叠加诱发断层冲击地压机理[J]. 工程, 2021, 7(5): 306-334. |
[7] | 王存文, 姜福兴, 刘金海. 构造对冲击地压的控制作用及案例分析[J]. 煤炭学报, 2012, 37(A2): 263-268. |
[8] | 林远东, 涂敏, 付宝杰, 等. 采动影响下断层稳定性的力学机理及其控制研究[J]. 煤炭科学技术, 2019, 47(9): 158-165. |
[9] | 张宁博, 赵善坤, 赵阳, 等. 逆冲断层卸载失稳机理研究[J]. 煤炭学报, 2020, 45(5): 1671-1680. |
[10] | 毛德兵, 陈法兵. 采动影响下断层活化规律及其诱发冲击地压的防治[J]. 煤矿开采, 2013, 18(1): 73-76 65. |
[11] | 蒋金泉, 武泉林, 曲华. 硬厚岩层下逆断层采动应力演化与断层活化特征[J]. 煤炭学报, 2015, 40(2): 267-277. |
[12] | 焦振华, 姜耀东, 赵毅鑫, 等. 工作面过断层动态力学响应特征研究[J]. 中国矿业大学学报, 2019, 48(1): 54-63.. |
[13] | 任政, 张科学, 姜耀东. 采动下逆断层活化过程中工作面应力场响应研究[J]. 煤炭科学技术, 2021, 49(9): 61-68. |
[14] | 王同旭, 曹明辉, 江东海. 采动影响下断层活化失稳及能量释放规律研究[J]. 煤炭科学技术, 2022, 50(7): 75-83. |
[15] | 于秋鸽, 张华兴, 张玉军, 等. 采动影响下断层活化机理及影响因素分析[J]. 煤炭学报, 2019, 44(S1): 18-30. |
[16] | 郭璐, 贺可强, 周云, 等. 水库型滑坡复合水动力增载位移响应比物理预测模型及其应用[J]. 工程地质学报, 2022, 30(5): 1561-1572. |
[17] | 崔峰, 贾冲, 来兴平, 等. 基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J]. 煤炭学报, 2022, 47(2): 745-761. |
[18] | 尹祥础, 尹灿. 非线性系统失稳的前兆与地震预报——响应比理论及其应用[J]. 中国科学(B辑化学生命科学地学), 1991(5): 512-518. |