|
非传统稳定同位素在碳酸岩研究中的应用
|
Abstract:
非传统稳定同位素高精度测试技术的快速发展,为非传统稳定同位素在碳酸岩来源方面的研究提供了全新的技术手段。越来越多的学者通过结合非传统稳定同位素,如Mg、Ce、B同位素来探讨碳酸岩研究中的相关问题。研究通过使用Neptune MC-ICP-MS,TIMS,Nu Plasma II MC-ICP-MS等仪器对不同研究区碳酸岩的非传统稳定同位素组成特征进行讨论分析,得到了Mg同位素特征在研究碳酸岩的来源和形成过程中的重要指示意义,Ce同位素在证明大洋碳酸岩母岩浆主要来源于再循环碳酸盐中的重要作用。B同位素与Sr-Nd-Pb同位素体系结合在有效识别碳酸岩的地幔组织组成中的重要作用。同位素实验证据都表明,碳酸岩的来源是地幔,且与地幔柱活动有时间及空间上的联系。
The rapid development of high-precision testing techniques for non-traditional stable isotopes has provided a new technological means for the study of non-traditional stable isotopes in carbonate rock sources. More and more scholars are exploring related issues in carbonate rock research by combining non-traditional stable isotopes such as Mg, Ce, and B isotopes. This study discussed and analyzed the non-traditional stable isotope composition characteristics of carbonate rocks in different study areas using instruments such as Neptune MC-ICP-MS, TIMS, and NuPlasma IIMC-ICP-MS. The important indicative significance of Mg isotope characteristics in studying the source and formation process of carbonate rocks was obtained, and Ce isotopes played an important role in proving that the parent magma of oceanic carbonate rocks mainly originates from recycled carbonates. The combination of B isotopes and Sr-Nd-Pb isotope systems plays an important role in effectively identifying the mantle tissue composition of carbonate rocks. Isotope experimental evidence indicates that carbonate rocks originate from the mantle and are spatially and temporally related to mantle plume activity.
[1] | 宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评, 2012, 58(4): 726-744. |
[2] | Song, W.L., Xu, C., Chakhmouradian, A.R., et al. (2017) Carbonatites of Tarim (NW China): First Evidence of Crustal Contribution in Carbonatites from a Large Igneous Province. Lithos, 282-283, 1-9. https://doi.org/10.1016/j.lithos.2017.02.018 |
[3] | Campbell, I.H. and Griffiths, R.W. (1990) Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99, 79-93. https://doi.org/10.1016/0012-821X(90)90072-6 |
[4] | Zhang, D.-Y., Zhang, Z.-C., Santosh, M., Cheng, Z.-G., He, H. and Kang, J.-L. (2013) Perovskite and Baddeleyite from Kimberlitic Intrusions in the Tarim Large Igneous Province Signal Theonset of an End-Carboniferous Mantle Plume. Earth and Planetary Science Letters, 361, 238-248. https://doi.org/10.1016/j.epsl.2012.10.034 |
[5] | Song, W.L., Xu, C., Smith, M.P., et al. (2016) Origin of Unusual HREE-Mo-Rich Carbonatites in the Qinling Orogen, China. Scientific Reports, 6, Article No. 37377. https://doi.org/10.1038/srep37377 |
[6] | 孙剑, 朱祥坤, 房楠, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 矿床地质, 2012, 28(S1): 2890-2902. |
[7] | Yang, K., Fan, H., Pirajno, F. and Li, X. (2019) The Bayan Obo (China) Giant REE Accumulation Conundrum Elucidated by Intense Magmatic Differentiation of Carbonatite. Geology, 47, 1198-1202. https://doi.org/10.1130/G46674.1 |
[8] | Doucelance, R., Bellot, N., Boyet, M., Hammouda, T. and Bosq, C. (2014) What Coupled Cerium and Neodymium Isotopes Tell us about the Deep Source of Oceanic Carbon Atites. Earth and Planetary Science Letters, 407, 175-186. https://doi.org/10.1016/j.epsl.2014.09.042 |
[9] | Ohno, T. and Hirata, T. (2013) Determination of Mass-Dependent Isotopic Fractionation of Cerium and Neodymium in Geochemical Samples by MC-ICPMS. Analytical Sciences, 29, 47-53. https://doi.org/10.2116/analsci.29.47 |
[10] | Makishima, A. and Nakamura, E. (1991) Precise Measurement of Cerium Isotope Composition in Rock Samples. Chemical Geology: Isotope Geoscience, 94, 1-11. https://doi.org/10.1016/0168-9622(91)90035-U |
[11] | Bonnand, P., Israel, C., Boyet, M., et al. (2019) Radiogenic and Stable Ce Isotope Measurements by Thermal Ionisation Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 34, 504-516. https://doi.org/10.1039/C8JA00362A |
[12] | Plank, T. and Langmuir, C.H. (1998) The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145, 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2 |
[13] | Mata, J., Moreira, M., Doucelance, R., Ader, M. and Silva, L.C. (2010) Noble Gas and Carbonisotopic Signatures of Cape Verde Oceanic Carbonatites: Implications for Carbon Provenance. Earth and Planetary Science Letters, 291, 70-83. https://doi.org/10.1016/j.epsl.2009.12.052 |
[14] | Hulett, S.R.W., Simonetti, A., et al. (2016) Recycling of Subducted Crustal Components into Carbonatite Melts Revealed by Boron Isotopes. Nature Geoscience, 9, 904-909. |