|
Mine Engineering 2024
焦油重整中催化剂中毒失活研究进展
|
Abstract:
焦油重整是有机固废热转化制氢过程中的关键环节,而其中的微量杂质会引起毒害作用,降低或消除催化剂的活性。因此,深入研究焦油重整过程中毒化物对催化剂的毒害机制,可为升高焦油转化率提供理论指导。本文通过对焦油重整技术研究现状分析,总结催化剂会引起S、N、Cl、金属和水蒸气中毒等5种情况,且多以毒物覆盖催化活性位点,防止催化反应发生的原因为主。为增强催化剂活性和寿命,对催化剂进行活性位点设计、表面修饰和制备方法改进等三方面的性能提升策略。在未来研究中,利用大数据、神经网络等方式深入探究焦油催化重整反应机理和催化剂新类型、制备方法,为催化剂工业化发展、焦油高效利用率提供理论参考和实际价值。
Tar reforming is a key link in the process of hydrogen production from thermal conversion of organic solid wastes, and the trace impurities in it can cause toxic effects and reduce or eliminate the activity of the catalyst. Therefore, an in-depth study of the poisoning mechanism of toxic compounds on catalysts in tar reforming process can provide theoretical guidance for increasing the tar conversion rate. In this paper, through the analysis of the current research status of tar reforming technology, we summarize that catalysts can cause S, N, Cl, metal and water vapour poisoning in five cases, and most of them are based on the reason that poisons cover the catalytic active sites and prevent the catalytic reaction from occurring. In order to enhance the catalyst activity and lifetime, the catalysts were subjected to a three-pronged performance enhancement strategy, including active site design, surface modification and preparation method improvement. In the future research, big data and neural networks are used to deeply investigate the tar catalytic reforming reaction mechanism and new types of catalysts and preparation methods, so as to provide theoretical references and practical values for the industrial development of catalysts and efficient tar conversion.
[1] | 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及其危害性[J]. 安徽农业科学, 2011, 39(4): 2243-2244. |
[2] | 陈文轩, 刘鹏, 李学琴, 等. 生物质焦油催化裂解催化剂的研究进展[J]. 林产工业, 2022, 59(3): 41-48. |
[3] | Ming, L., Ruicong, S., Yanjun, Q., et al. (2023) Conversion and Syngas Production of Toluene as a Biomass Tar Model Compound in Chemical Looping Reforming. Fuel, 345, Article ID: 128203. https://doi.org/10.1016/j.fuel.2023.128203 |
[4] | Tang, X.G., Wu, P.J., Wang, Y., et al. (2023) Recent Advances in Heavy Metal Poisoning Mechanism and Regen-Eration Methods of Selective Catalytic Reduction (SCR) Denitration Catalyst. Fuel, 355, Article ID: 129429. https://doi.org/10.1016/j.fuel.2023.129429 |
[5] | Shen, A.L., Dong, W.W., Zhang, L., et al. (2023) Revealing the Mechanism of K-Enhanced Cu-SSZ-13 Catalysts against Hydrothermal Aging and P-Poisoning for NOx Reduction by NH3-SCR. Separation and Purification Technology, 330, Article ID: 125248. https://doi.org/10.1016/j.seppur.2023.125248 |
[6] | Porras, S., Sippula, O., Mesceriakove, S.M., et al. (2023) Poisoning of Automotive Methane Oxidation Catalysts by Silicon Compounds. Chemical Engineering Science, 282, Article ID: 119268. https://doi.org/10.1016/j.ces.2023.119268 |
[7] | Zhang, K.Y., Luo, N., Huang, Z.S., et al. (2023) Recent Advances in Low-Temperature NH3-SCR of NOx over Ce-Based Catalysts: Performance Optimizations, Reaction Mechanisms and Anti-Poisoning Countermeasures. Chemical Engineering Journal, 476, Article ID: 146889. https://doi.org/10.1016/j.cej.2023.146889 |
[8] | 刘爽. 生物质焦油催化重整制氢研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2015. |
[9] | 刘粤. 改性镍基催化剂水蒸气重整焦油模化物实验研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[10] | Qin, T. and Yuan, S. (2023) Research Progress of Catalysts for Catalytic Steam Reforming of High Temperature Tar: A Review. Fuel, 331, Article ID: 125790. https://doi.org/10.1016/j.fuel.2022.125790 |
[11] | 汤文. 高分散Co/C低温催化玉米芯焦油水蒸气重整[D]: [硕士学位论文]. 北京: 中国矿业大学, 2021. |
[12] | Savuto, E., Navarro, R.M., Mota, N., et al. (2018) Steam Reforming of Tar Model Compounds over Ni/Mayenite Catalysts: Effect of Ce Addition. Fuel, 224, 676-686. https://doi.org/10.1016/j.fuel.2018.03.081 |
[13] | 周小钰, 么秋香, 孙鸣, 等. RFCC分子筛催化剂的失活机理及抗失活方法研究进展[J]. 广东化工, 2024, 51(4): 55-57. |
[14] | Li, W.Q., Hu, D., Yin, K., et al. (2022) Hierarchical Ru-Ce/H-ZSM-5 Catalysts for the Catalytic Oxidation of Chlorobenzene: Structure-Activity Relationship and Chlorine Poisoning Resistance. Surfaces and Interfaces, 34, Article ID: 102320. https://doi.org/10.1016/j.surfin.2022.102320 |
[15] | 杜凯敏, 秦刚华, 祁志福, 等. NH3-SCR脱硝催化剂的中毒及其抗毒策略[J]. 现代化工, 2021, 41(11): 58-62. |
[16] | Yan, X., Zhao, L.K., Huang, Y., et al. (2023) Three-Dimensional Porous CuO-Modified CeO2-Al2O3 Catalyst with Chlorine Resistance for Simultaneous Catalytic Oxidation of Chlorobenzene and Mercury: Cu-Ce Interaction and Structure. Journal of Hazardous Materials, 455, Article ID: 131585. https://doi.org/10.1016/j.jhazmat.2023.131585 |
[17] | Yunlon, T., Xiao, Q.M., Xin, F.C., et al. (2022) The Influence of Shell Thickness on Coke Resistance of Core-Shell Catalyst in CO2 Catalytic Reforming of Biomass Tar. International Journal of Hydrogen Energy, 47, 13838-13849. https://doi.org/10.1016/j.ijhydene.2022.02.130 |
[18] | 李永玲, 吴占松. 生物质焦油催化裂解过程中酸性催化剂积碳失活与烧焦再生特性[J]. 中国电机工程学报, 2014, 34(8): 1297-1303. |
[19] | Wu, Y.W., Hu, Z., Zhou, J.L., et al. (2023) Improvement in the Resistance to KCl and PbCl2 Synergistic Poisoning of the Commercial SCR Catalyst by Ce(SO4)2 Modification: A Combined Experimental and Spin-Polarized DFT Study. Journal of Environmental Chemical Engineering, 11, Article ID: 109649. https://doi.org/10.1016/j.jece.2023.109649 |
[20] | Zhang, Y.P., Li, G.B., Wu, P., et al. (2022) Enhancement of PdV/TiO2 Catalyst for Low Temperature DCM Cat-Alytic Removal and Chlorine Poisoning Resistance by Oxygen Vacancy Construction. Chemical Engineering Science, 264, Article ID: 118126. https://doi.org/10.1016/j.ces.2022.118126 |
[21] | Zhou, F.Y., Xin, Q., Fu, Y.J., et al. (2023) Efficient Catalytic Oxidation of Chlorinated Volatile Organic Compounds over RuO2-WOx/Sn0.2Ti0.8O2 Catalysts: Insight into the Cl Poisoning Mechanism of Acid Sites. Chemical Engineering Journal, 464, Article ID: 142471. https://doi.org/10.1016/j.cej.2023.142471 |
[22] | 王瑞华, 邹伟欣, 聂玮, 等. 稀土铈基NH3-SCR催化剂抗金属离子中毒研究进展[J/OL]. 中国稀土学报: 1-14. http://wxlib.cqust.edu.cn:8000/c/http.kns.cnki.net/kcms/detail/11.2365.TG.20240124.1458.002.html, 2024-04-22. |
[23] | Liang, S., Liao, Y.F., Li, W.J., et al. (2023) Enhanced Stability of Iron-Nickel Oxygen Carriers in Biomass Che-Mical Looping Gasification by Core-Shell Structure. Chemical Engineering Journal, 451, Article ID: 138964. https://doi.org/10.1016/j.cej.2022.138964 |
[24] | Rong, N., Han, L., Ma, K., et al. (2023) Enhanced Multi-Cycle CO2 Capture and Tar Reforming via a Hybrid CaO-Based Absorbent/Catalyst: Effects of Preparation, Reaction Conditions and Application for Hydrogen Production. International Journal of Hydrogen Energy, 48, 9988-10001. https://doi.org/10.1016/j.ijhydene.2022.08.022 |
[25] | Chen, W.X., Li, X.Q., Li, Y.L., et al. (2022) Synergistic Modification of Ca/Co on Ni/HZSM-5 Catalyst for Pyrolysis of Organic Components in Biomass Tar. Journal of Analytical and Applied Pyrolysis, 166, Article ID: 105619. https://doi.org/10.1016/j.jaap.2022.105619 |
[26] | Huang, P., Liu, M. and Chang, Q.L. (2020) MoO3/Al-SBA-15 Modified Catalyst and Its Application in Coal Tar Hydrocracking. Journal of Fuel Chemistry and Technology, 48, 1079-1086. https://doi.org/10.1016/S1872-5813(20)30072-4 |
[27] | 马志远, 邹雪华, 李宏伟, 等. 热处理白云石-凹凸棒石黏土催化裂解甲苯的性能[J]. 硅酸盐学报, 2018, 46(5): 731-738. |
[28] | Wang, J.X., Zhang, S.P., Ye, L., et al. (2023) Investigation on Deactivation Progress of Biochar Supported Ni C-Atalyst during Biomass Catalytic Cracking Process. Fuel Processing Technology, 250, Article ID: 107897. https://doi.org/10.1016/j.fuproc.2023.107897 |
[29] | Li, X.Q., Liu, P., Huang, S., et al. (2023) Study on the Mechanism of Syngas Production from Catalytic Pyrolysis of Biomass Tar by Ni-Fe Catalyst in CO2 Atmosphere. Fuel, 335, Article ID: 126705. https://doi.org/10.1016/j.fuel.2022.126705 |
[30] | Wang, X.Q., Liu, Y., Wu, Z.B. (2020) The Poisoning Mechanisms of Different Zinc Species on a Ceria-Based NH3-SCR Catalyst and the Co-Effects of Zinc and Gas-Phase Sulfur/Chlorine Species. Journal of Colloid and Interface Science, 566, 153-162. https://doi.org/10.1016/j.jcis.2020.01.058 |