全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study the Effect of Thickness on the Performance of PM6:Y6 Organic Solar Using SCAPS Simulation

DOI: 10.4236/ampc.2024.144005, PP. 55-65

Keywords: Organic Solar Cells, PEDOT:PSS, BTP-4F (Y6), PBDB-T-2F (PM6), PFN-Br, SCAPS 1D

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance simulator (SCAPS-1D) software to examine the performance of this type of organic polymer thin-film solar cell by varying the thickness of the active layer. PFN-Br interfacial layer entrenched in OPV devices gives overall enhanced open-circuit voltage, short-circuit current density and fill factor thus improving device performance. PEDOT: PSS is an electro-conductive polymer solution that has been extensively utilized in solar cell devices as a hole transport layer (HTL) due to its strong hole affinity, good thermal and mechanical stability, high work function, and high transparency in the visible range. The structure of the organic solar cell is ITO/PEDOT: PSS/BTP-4F: PBDB-T-2F/PFN-Br/Ag. Firstly, the active layer thickness was optimized to 100 nm; after that, the active-layer thickness was varied up to 900 nm. The results of these simulations demonstrated that the active layer thickness improves efficiency significantly up to 500 nm, then it decreased with increasing the thickness of the active layer from 600 nm, also notice that the short circuit current and the fill factor decrease with increasing the active layer from 600 nm, while the open voltage circuit increased with increasing the thickness of the active layer. The optimum thickness is 500 nm.

References

[1]  Khan, M.R. and Jarzombek, B. (2023) Optimization and Efficiency Enhancement of Modified Polymer Solar Cells. Polymers, 15, Article 3674.
https://doi.org/10.3390/polym15183674
[2]  Al-Muhimeed, T.I., Alahmari, S., Ahsan, M. and Salah, M.M. (2023) An Investigation of the Inverted Structure of a PBDB:T/PZT:C1-Based Polymer Solar Cell. Polymers, 15, Article 4623.
https://doi.org/10.3390/polym15244623
[3]  Yung, F., Huang, Y., Li, Y. and Li, Y. (2021) Large-Area Flexible Organic Solar Cells. npj Flexible Electronics, 5, Article No. 30.
https://doi.org/10.1038/s41528-021-00128-6
[4]  Wang, M., Zhou, M., Zhu, L., Li, Q. and Jiang, C. (2016) Enhanced Polymer Solar Cells Efficiency by Surface Coating of the PEDOT:PSS with Polar Solvent. Solar Energy, 129, 175-183.
https://doi.org/10.1016/j.solener.2016.02.003
[5]  Wang, Y., Shi, Z., Liu, H., Wang, F., et al. (2017) The Effect of Donor and Norfullerene Acceptor Inhomogeneous Distribution within the Photoactive Layer on the Performance of Polymer Solar Cells with Different Device Structures. Polymers, 9, Article 571.
https://doi.org/10.3390/polym9110571
[6]  Sharma, N., Gupta, S.K. and Singh Negi, C.M. (2019) Influence of Active Layer Thickness on Photovoltaic Performance of PTB7:PC70BM Bulk Heterojunction Solar Cell. Superlattices and Microstructures, 135, Article 106278.
https://doi.org/10.1016/j.spmi.2019.106278
[7]  Ramírez-Como, M., Balderrama, V.S., Sacramento, A., Marsal, L.F., Lastra, G. and Estrada, M. (2019) Fabrication and Characterization of Inverted Organic PTB7:PC70BM Solar Cells Using Hf-in-ZnO as Electron Transport Layer. Solar Energy, 181, 386-395.
https://doi.org/10.1016/j.solener.2019.02.015
[8]  Dridi, C., Touafek, N. and Mohamedi, R. (2022) Inverted PTB7:PC70BM Bulk Heterojunction Solar Cell Device Simulations for Various Inorganic Hole Transport Materials. Optik, 252, Article 168447.
https://doi.org/10.1016/j.ijleo.2021.168447
[9]  Bag, M., Kumar, J. and Kumar, R. (2023) Chapter 6—Polymer Semiconducting Materials for Organic Solar Cells. In: Khan, A., Nazim, M. and Asiri, A., Eds., Advances in Electronic Materials for Clean Energy Conversion and Storage Applications, Woodhead Publishing, Cambridge, United Kingdom, 123-148.
https://doi.org/10.1016/B978-0-323-91206-8.00022-4
[10]  Shehzad, R.A., Zahid, S., Rasool, A. and Iqbal, J. (2022) Organic Semiconductors for Photovoltaics. In: Gupta, R., Ed., Handbook of Energy Materials, Springer, Singapore, 1-33.
https://doi.org/10.1007/978-981-16-4480-1_66-1
[11]  Bratina, G. and Pavlica, E. (2019) Characterization of Charge Carrier Transport in Thin Organic Semiconductor Layers by Time-of-Flight Photocurrent Measurements. Organic Electronics, 64, 117-130.
https://doi.org/10.1016/j.orgel.2018.09.049
[12]  Skromme, B.J. (2006) Semiconductor Heterojunctions. In: Jürgen Buschow, K.H., Cahn, R.W., Flemings, M.C., et al, Eds., Encyclopedia of Materials: Science and Technology (Second Edition), Pergamon Press, Oxford, 1-11.
https://doi.org/10.1016/B0-08-043152-6/02083-0
[13]  Zhong, S., Yap, B.K., Zhong, Z. and Ying, L. (2022) Review on Y6-Based Semiconductor Materials and Their Future Development via Machine Learning. Crystals, 12, Article 168.
https://doi.org/10.3390/cryst12020168
[14]  Wang, Y., et al. (2017) High-Performance Nonfullerene Polymer Solar Cells Based on Fluorinated Wide Bandgap Copolymer with a High Open-Circuit Voltage of 1.04 V. Journal of Materials Chemistry A, 5, 22180-22185.
https://doi.org/10.1039/C7TA07785H
[15]  Prajapati, U.K., Soni, E., Solanki, M. and Rani, J. (2023) Enhancing the Efficiency of PM6:Y6 Bulk-Heterojunction Organic Solar Cells through SCAPS Simulation Optimization. Chinese Journal of Physics.
https://doi.org/10.1016/j.cjph.2023.12.028
[16]  Mathur, A.S., Dubey, S., Nidhi, and Singh, B.P. (2020) Study of Role of Different Defects on the Performance of CZTSe Solar Cells Using SCAPS. Optik, 206, Article 163245.
https://doi.org/10.1016/j.ijleo.2019.163245
[17]  Abdelaziz, W., Shaker, A., Abouelatta, M. and Zekry, A. (2019) Possible Efficiency Boosting of Non-Fullerene Acceptor Solar Cell Using Device Simulation. Optical Materials, 91, 239-245.
https://doi.org/10.1016/j.optmat.2019.03.023
[18]  Schnippering, M., et al. (2007) Electronic Properties of Ag Nanoparticle Arrays. A Kelvin Probe and High Resolution XPS Study. Physical Chemistry Chemical Physics, 9, 725-730.
https://doi.org/10.1039/B611496B
[19]  Philippa, B., Stolterfoht, M., Burn, P.L., Juška, G., Meredith, P., White, R.D. and Pivrikas, A. (2014) The Impact of Hot Charge Carrier Mobility on Photocurrent Losses in Polymer-Based Solar Cells. Scientific Reports, 4, Article No. 5695.
https://doi.org/10.1038/srep05695
[20]  Shewchun, J., Dubow, J., Wilmsen, C.W., Singh, R., Burk, D. and Wager, J. (1979) The Operation of the Semiconductor-Insulator-Semiconductor Solar Cell: Experiment. Journal of Applied Physics, 50, 2832-2839.
https://doi.org/10.1063/1.326196
[21]  Zhu, Y., Gadisa, A., Peng, Z., Ghasemi, M., Ye, L., Xu, Z., Zhao, S. and Ade, H. (2019) Rational Strategy to Stabilize an Unstable High-Efficiency Binary Nonfullerene Organic Solar Cells with a Third Component. Advanced Energy Materials, 9, Article 1900376.
https://doi.org/10.1002/aenm.201900376
[22]  Singh, R., Lee, J., Kim, M., Keivanidis, P.E. and Cho, K. (2017) Control of the Molecular Geometry and Nanoscale Morphology in Perylene Diimide Based Bulk Heterojunctions Enables an Efficient Non-Fullerene Organic Solar Cell. Journal of Materials Chemistry A, 5, 210-220.
https://doi.org/10.1039/C6TA08870H
[23]  Amin, P.O., Muhammadsharif, F.F., Saeed, S.R. and Ketuly, K.A. (2023) A Review of the Improvements in the Performance and Stability of Ternary Semi-Transparent Organic Solar Cells: Material and Architectural Approaches. Sustainability, 15, Article 12442.
https://doi.org/10.3390/su151612442
[24]  Bhujel, R., Rai, S., Deka, U., Sarkar, G., Biswas, J. and Swain, B.P. (2021) Bandgap Engineering of PEDOT:PSS/rGO a Hole Transport Layer for SiNWs Hybrid Solar Cells. Bulletin of Materials Science, 44, Article No. 72.
https://doi.org/10.1007/s12034-021-02376-8
[25]  Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q. and Hou, J. (2015) Realizing over 10% Efficiency in Polymer Solar Cell by Device Optimization. Science China Chemistry, 58, 248-256.
https://doi.org/10.1007/s11426-014-5273-x
[26]  Tomblaine, N., et al. (2020) Extraordinarily Long Diffusion Length in PM6:Y6 Organic Solar Cells. Journal of Materials Chemistry A, 8, 7854-7860.
https://doi.org/10.1039/D0TA03016C
[27]  Yang, J., et al. (2023) Improved Short-Circuit Current and Fill Factor in PM6:Y6 Organic Solar Cells through D18-Cl Doping. Nanomaterials, 13, Article 2899.
https://doi.org/10.3390/nano13212899
[28]  Ma, J.H., et al. (2023) Highly Efficient ITO-Free Quantum-Dot Light Emitting Diodes via Solution-Processed PEDOT:PSS Semitransparent Electrode. Materials, 16, Article 4053.
https://doi.org/10.3390/ma16114053
[29]  Jäckle, S., Liebhaber, M., Gersmann, C., Mews, M., Jäger, K., Hristiansen, S. and Lips, K. (2017) Potential of PEDOT:PSS as a Hole Front Contact for Silicon Heterojunction Solar Cells. Scientific Reports, 7, Article No. 2170.
https://doi.org/10.1038/s41598-017-01946-3
[30]  Yu, K., et al. (2022) 18.01% Efficiency Organic Solar Cell and 2.53% Light Utilization Efficiency Semitransparent Organic Solar Cell Enabled by Optimizing PM6:Y6 Active Layer Morphology. Science China Chemistry, 65, 1615-1622.
https://doi.org/10.1007/s11426-022-1270-5
[31]  Nomin, M., et al. (2021) Requirements for Making Thick Junctions of Organic Solar Cells Based on Norfullerene Acceptors. Solar RRL, 5, Article 2100018.
https://doi.org/10.1002/solr.202100018
[32]  Wang, K., et al. (2021) Enhanced Short Circuit Current Density and Efficiency of Ternary Organic Solar Cells by Addition of a Simple Copolymer Third Component. Chemical Engineering Journal, 425, Article 130575.
https://doi.org/10.1016/j.cej.2021.130575
[33]  Jia, Z., Qin, S., Meng, L., Ma, Q., Angunawela, I., Zhang, J., Li, X., He, Y., Lai, W., Li, N., et al. (2021) High Performance Tandem Organic Solar Cells via a Strongly Infrared-Absorbing Narrow Bandgap Acceptor. Nature Communications, 12, Article No. 178.
https://doi.org/10.1038/s41467-020-20431-6
[34]  Chen, W.Q. and Zhang, Q.C. (2017) Recent Progress in Non-Fullerene Small Molecule Acceptors in Organic Solar Cells (OSCs). Journal of Materials Chemistry C, 5, 1275-1302.
https://doi.org/10.1039/C6TC05066B

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133