|
纳米级二氧化钛的合成方法、应用以及改性处理的研究
|
Abstract:
纳米二氧化钛在光催化、制氢方面等领域得到广泛应用。目前纳米二氧化钛合成方法包括气相合成法、溶胶–凝胶法、固体混合法和直接焙烧法等。这些方法在反应条件、温度、时间、原料选择和后处理等方面有所不同,影响着TiO2的粒径、形貌、晶相和光催化效率。在改善TiO2光催化性能方面,主要通过掺杂Ni、Co、Mn、C等元素调整TiO2的能带结构,促进电子–空穴对的分离;复合化可实现TiO2与其他材料的协同效应。此外,该综述还涉及二氧化钛改性对光催化性能的影响,以及TiO2在环境净化、水分解、抗菌和有机合成等领域的应用。
Nano titanium dioxide is widely used in photocatalysis, hydrogen production aspects and other fields. The current methods for the synthesis of titanium dioxide nanoparticles include gas-phase synthesis, sol-gel method, solid mixing method and direct roasting method. These methods differ in reaction conditions, temperature, time, raw material selection and post-treatment, which affect the particle size, morphology, crystalline phase and photocatalytic efficiency of TiO2. In improving the photocatalytic performance of TiO2, the energy band structure of TiO2 is mainly adjusted by doping Ni, Co, Mn, C and other elements, which promotes the separation of electron-hole pairs; and compositing can realize the synergistic effect between TiO2 and other materials. In addition, this review also covers the impact of titanium dioxide modification on photocatalytic performance, as well as the application of TiO2 in the fields of environmental purification, water splitting, antibacterial and organic synthesis.
[1] | Zhao, W., Li, Y., Zhao, P., et al. (2021) Insights into the Photocatalysis Mechanism of the Novel 2D/3D Z-Scheme G-C3N4/SnS2 Heterojunction Photocatalysts with Excellent Photocatalytic Performances. Journal of Hazardous Materials, 402, Article ID: 123711. https://doi.org/10.1016/j.jhazmat.2020.123711 |
[2] | Wang, X., Wang, M., Liu, G., et al. (2021) Colloidal Carbon Quantum Dots as Light Absorber for Efficient and Stable Ecofriendly Photoelectrochemical Hydrogen Generation. Nano Energy, 86, Article ID: 106122. https://doi.org/10.1016/j.nanoen.2021.106122 |
[3] | Liang, X., Cao, X., Sun, W., et al. (2019) Recent Progress in Visible Light Driven Water Oxidation Using Semiconductors Coupled with Molecular Catalysts. ChemCatChem, 11, 6190-6202. https://doi.org/10.1002/cctc.201901510 |
[4] | 杨琳. 染料敏化太阳能电池纳米TiO2薄膜电极制备及其性能[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2013. |
[5] | 徐立媛. 染料敏化纳米晶体TiO2薄膜太阳能电池研究[D]: [硕士学位论文]. 沈阳: 沈阳航空航天大学, 2012. |
[6] | 王立艳, 李嘉冰, 张晓佳. 可见光激发二氧化钛光催化剂的研究进展[J]. 新型建筑材料, 2018, 45(12): 82-85. |
[7] | Zhao, D., Saputra, R.M., Song, P., et al. (2020) Enhanced Photoelectric and Photocatalysis Performances of Quinacridone Derivatives by Forming D-π-AA Structure. Solar Energy, 201, 872-883. https://doi.org/10.1016/j.solener.2020.03.053 |
[8] | Kusior, A., Banas, J., Trenczek-Zajac, A., et al. (2018) Structural Properties of TiO2 Nanomaterials. Journal of Molecular Structure, 1157, 327-336. https://doi.org/10.1016/j.molstruc.2017.12.064 |
[9] | Fotou, G.P. and Pratsinis, S.E. (1996) Photocatalytic Destruction of Phenol and Salicylic Acid with Aerosol-Made and Commercial Titania Powders. Chemical Engineering Communications, 151, 251-269. https://doi.org/10.1080/00986449608936551 |
[10] | 洪杰. TiO2基改性催化剂制备及其降解染料性能的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019. |
[11] | 喻志峰, 谢捷欣, 李亚玲. 铂-二氧化钛纳米复合物的超重力技术组装制备及催化加氢性能[J]. 金属功能材料, 2019, 26(3): 7-11. |
[12] | 要一帆, 吴张永, 莫子勇. 水基纳米氮化钛流体摩擦学性能研究[J]. 金属功能材料, 2016, 23(6): 20. |
[13] | 李宁, 张伟, 李贵贤. TiO2光催化剂的研究进展[J]. 精细化工, 2021, (11): 2181-2188, 2258. |
[14] | 薛垂兵. 二氧化钛基光催化材料制备及其性能研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2019. |
[15] | Thompson, T.L. and Yates, J.T. (2006) Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes. Chemical Reviews, 106, 4428-4453. https://doi.org/10.1021/cr050172k |
[16] | Marchand, R., Brohan, L. and Tournoux, M. (1980) TiO2 (B) a New Form of Titanium Dioxide and the Potassium Octatitanate K2Ti8O17. Materials Research Bulletin, 15, 1129-1133. https://doi.org/10.1016/0025-5408(80)90076-8 |
[17] | 王珅, 陈琦. 纳米二氧化钛复合材料的制备及其应用进展研究[J]. 聚酯工业, 2023, 36(6): 49-52. |
[18] | Tian, J., Zhao, Z., Kumar, A., et al. (2014) Recent Progress in Design, Synthesis, and Applications of One-Dimensional TiO2 Nanostructured Surface Heterostructures: A Review. Chemical Society Reviews, 43, 6920-6937. https://doi.org/10.1039/C4CS00180J |
[19] | Rychtowski, P., Tryba, B., Fuks, H., et al. (2021) Impact of TiO2 Surface Defects on the Mechanism of Acetaldehyde Decomposition under Irradiation of a Fluorescent Lamp. Catalysts, 11, Article No. 1281. https://doi.org/10.3390/catal11111281 |
[20] | Moloto, N., Moloto, M., Coville, N., et al. (2009) Optical and Structural Characterization of Nickel Selenide Nanoparticles Synthesized by Simple Methods. Journal of Crystal Growth, 311, 3924-3932. https://doi.org/10.1016/j.jcrysgro.2009.06.006 |
[21] | Min, S., Wang, F. and Han, Y. (2007) An Investigation on Synthesis and Photocatalytic Activity of Polyaniline Sensitized Nanocrystalline TiO2 Composites. Journal of Materials Science, 42, 9966-9972. https://doi.org/10.1007/s10853-007-2074-z |
[22] | 古映莹, 邱小勇, 杜作娟. 不同晶型纳米TiO2的水热合成及光催化性能[J]. 化工新型材料, 2004, 32(3): 14-16. |
[23] | 王世敏, 许祖勋, 傅晶. 纳米材料制备技术[M]. 北京: 化学工业出版社, 2002. |
[24] | 唐晓山, 李达. 溅射法制备二氧化钛纳米薄膜的光催化杀菌性能[J]. 环境与健康杂志, 2009, 26(11): 1009-1010 1035. |
[25] | Yoshitake, H., Sugihara, T. and Tatsumi, T. (2002) Preparation of Wormhole-Like Mesoporous TiO2 with an Extremely Large Surface Area and Stabilization of Its Surface by Chemical Vapor Deposition. Chemistry of Materials, 14, 1023-1029. https://doi.org/10.1021/cm010539b |
[26] | Ahn, K.-H., Park, Y.-B. and Park, D.-W. (2003) Kinetic and Mechanistic Study on the Chemical Vapor Deposition of Titanium Dioxide Thin Films by in Situ FT-IR Using TTIP. Surface Coatings Technology, 171, 198-204. https://doi.org/10.1016/S0257-8972(03)00271-8 |
[27] | 付雅君, 韩彬, 王纪飞. 纳米二氧化钛的制备及光催化性能研究进展[J]. 信息记录材料, 2022(9): 5-7. |
[28] | 贺进明. 微乳液法和水热法制备纳米二氧化钛的研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2009. |
[29] | Wu, L., Hou, S. and Chen, X. (2008) Study on How to Improve the Performances of the Enveloped Titanium Dioxide Pigment. Modern Paint and Finishing, 11, 44. |
[30] | López-Ramón, M.V., álvarez, M.A., Moreno-Castilla, C., et al. (2018) Effect of Calcination Temperature of a Copper Ferrite Synthesized by a Sol-Gel Method on Its Structural Characteristics and Performance as Fenton Catalyst to Remove Gallic Acid From Water. Journal of Colloid Interface Science, 511, 193-202. https://doi.org/10.1016/j.jcis.2017.09.117 |
[31] | Tabesh, S., Davar, F. and Loghman-Estarki, M.R. (2018) Preparation of γ-Al2O3 Nanoparticles Using Modified Sol-Gel Method and Its Use for the Adsorption of Lead and Cadmium Ions. Journal of Alloys Compounds, 730, 441-449. https://doi.org/10.1016/j.jallcom.2017.09.246 |
[32] | Zhu, Z., Kao, C.-T., Tang, B.-H., et al. (2016) Efficient Hydrogen Production by Photocatalytic Water-Splitting Using Pt-Doped TiO2 Hollow Spheres under Visible Light. Ceramics International, 42, 6749-6754. https://doi.org/10.1016/j.ceramint.2016.01.047 |
[33] | Khore, S.K., Tellabati, N.V., Apte, S.K., et al. (2017) Green Sol-Gel Route for Selective Growth of 1D Rutile N-TiO2, a Highly Active Photocatalyst for H2 Generation and Environmental Remediation under Natural Sunlight. RSC Advances, 7, 33029-33042. https://doi.org/10.1039/C7RA01648D |
[34] | 贺进明, 彭旭红, 吕辉鸿. 微乳液法低温制备纳米金红石型二氧化钛的研究[J]. 无机化学学报, 2008, 24(2): 191-194. |
[35] | 赵丽敏, 王杰, 张鑫. 纳米二氧化钛复合光催化的制备及其光催化活性的研究[J]. 赤峰学院学报(自然版), 2018, 34(2): 12-13. |
[36] | Li, X., Zhang, G., Wang, X., et al. (2019) Facile Synthesis of Nitrogen-Doped Titanium Dioxide with Enhanced Photocatalytic Properties. Materials Research Express, 6, Article ID: 115019. https://doi.org/10.1088/2053-1591/ab44f2 |
[37] | Izanloo, M., Esrafili, A., Behbahani, M., et al. (2018) Trace Quantification of Selected Sulfonamides in Aqueous Media by Implementation of a New Dispersive Solid‐Phase Extraction Method Using a Nanomagnetic Titanium Dioxide Graphene‐Based Sorbent and HPLC‐UV. Journal of Separation Science, 41, 910-917. https://doi.org/10.1002/jssc.201700814 |
[38] | Chen, T. and Liu, B. (2017) Enhanced Dielectric Performance of Poly(Vinylidene Fluoride) Composite Filled with Copper Phthalocyanine-Titanium Dioxide Ball Milling Hybrids. Materials Letters, 209, 467-471. https://doi.org/10.1016/j.matlet.2017.08.085 |
[39] | 张向超, 杨华明. Ni2 掺杂TiO2薄膜微观结构及亲水性能[J]. 中南大学学报(自然科学版), 2012, 43(7): 2554-2559. |
[40] | Malevu, T. (2021) Ball Milling Synthesis and Characterization of Highly Crystalline TiO2-ZnO Hybrids for Photovoltaic Applications. Physica B: Condensed Matter, 621, Article ID: 413291. https://doi.org/10.1016/j.physb.2021.413291 |
[41] | 林元华, 张中太, 黄淑兰. 纳米金红石型TiO2粉体的制备及其表征[J]. 无机材料学报, 1999, 14(6): 853-860. |
[42] | 章金兵, 许民, 周小英. 固相法合成纳米二氧化钛[J]. 有色金属(冶炼部分), 2005(6): 42-43 45. |
[43] | 曾祥蕊, 卫静, 刘欣. TiO2光催化剂改性研究进展[J]. 环境保护与循环经济, 2019, 39(8): 28-31 67. |
[44] | 杨志广, 冯丽, 吴亚楠, 等. TiO2光催化剂表面改性研究进展[J]. 应用化工, 2015, 44(2): 340-343. |
[45] | 张平, 赵乐, 王曌, 等. 改性二氧化钛光解水制氢应用的研究进展[J]. 环境科学与技术, 2023, 46(9): 119-128. |
[46] | 刘建华, 姜宇, 包旭霞, 等. TiO2掺杂及其光催化活性的研究进展[J]. 内蒙古民族大学学报(自然科学版), 2015, 30(5): 391-394. |
[47] | Cushing, S.K., Li, J., Meng, F., et al. (2012) Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 134, 15033-15041. https://doi.org/10.1021/ja305603t |
[48] | 吴树新, 马智, 秦永宁. 过渡金属掺杂二氧化钛光催化性能的研究[J]. 感光科学与光化学, 2005, 23(2): 94-101. |
[49] | Chan, S.H.S., Yeong Wu, T., Juan, J.C., et al. (2011) Recent Developments of Metal Oxide Semiconductors as Photocatalysts in Advanced Oxidation Processes (AOPs) for Treatment of Dye Waste‐Water. Journal of Chemical Technology Biotechnology, 86, 1130-1158. https://doi.org/10.1002/jctb.2636 |
[50] | Monga, A., Bathla, A. and Pal, B. (2017) A Cu-Au Bimetallic Co-Catalysis for the Improved Photocatalytic Activity of TiO2 under Visible Light Radiation. Solar Energy, 155, 1403-1410. https://doi.org/10.1016/j.solener.2017.07.084 |
[51] | 朱佳新, 熊裕华, 郭锐. 二氧化钛光催化剂改性研究进展[J]. 无机盐工业, 2020, 52(3): 23-27 54. |
[52] | 王丽, 陈永, 赵辉, 等. 非金属掺杂二氧化钛光催化剂的研究进展[J]. 材料导报, 2015, 29(1): 147-151. |
[53] | Di Valentin, C., Finazzi, E., Pacchioni, G., et al. (2007) N-Doped TiO2, Theory and Experiment. Chemical Physics, 339, 44-56. https://doi.org/10.1016/j.chemphys.2007.07.020 |
[54] | Spadavecchia, F., Cappelletti, G., Ardizzone, S., et al. (2010) Solar Photoactivity of Nano-N-TiO2 from Tertiary Amine: Role of Defects and Paramagnetic Species. Applied Catalysis B: Environmental, 96, 314-322. https://doi.org/10.1016/j.apcatb.2010.02.027 |
[55] | Ravidhas, C., Anitha, B., Moses Ezhil Raj, A., et al. (2015) Effect of Nitrogen Doped Titanium Dioxide (N-TiO2) Thin Films by Jet Nebulizer Spray Technique Suitable for Photoconductive Study. Journal of Materials Science: Materials in Electronics, 26, 3573-3582. https://doi.org/10.1007/s10854-015-2871-0 |
[56] | Patel, N., Jaiswal, R., Warang, T., et al. (2014) Efficient Photocatalytic Degradation of Organic Water Pollutants Using V-N-Codoped TiO2 Thin Films. Applied Catalysis B: Environmental, 150, 74-81. https://doi.org/10.1016/j.apcatb.2013.11.033 |
[57] | Irie, H., Watanabe, Y. and Hashimoto, K. (2003) Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-XNx Powders. The Journal of Physical Chemistry B, 107, 5483-5486. https://doi.org/10.1021/jp030133h |
[58] | Shang, G., Fu, H., Yang, S., et al. (2012) Mechanistic Study of Visible-Light-Induced Photodegradation of 4-Chlorophenol by TiO2-XNx with Low Nitrogen Concentration. International Journal of Photoenergy, 2012, Article ID: 759306. https://doi.org/10.1155/2012/759306 |
[59] | Lee, S., Yun, C.Y., Hahn, M.S., et al. (2008) Synthesis and Characterization of Carbon-Doped Titania as a Visible-Light-Sensitive Photocatalyst. Korean Journal of Chemical Engineering, 25, 892-896. https://doi.org/10.1007/s11814-008-0147-6 |
[60] | Lettmann, C., Hildenbrand, K., Kisch, H., et al. (2001) Visible Light Photodegradation of 4-Chlorophenol with a Coke-Containing Titanium Dioxide Photocatalyst. Applied Catalysis B: Environmental, 32, 215-227. https://doi.org/10.1016/S0926-3373(01)00141-2 |
[61] | Hu, Z., Xu, T., Liu, P., et al. (2020) Developed Photocatalytic Semi-Flexible Pavement for Automobile Exhaust Purification Using Iron-Doped Titanium Dioxide. Construction Building Materials, 262, Article ID: 119924. https://doi.org/10.1016/j.conbuildmat.2020.119924 |
[62] | Javanbakht, V. and Mohammadian, M. (2021) Photo-Assisted Advanced Oxidation Processes for Efficient Removal of Anionic and Cationic Dyes Using Bentonite/TiO2 Nano-Photocatalyst Immobilized with Silver Nanoparticles. Journal of Molecular Structure, 1239, Article ID: 130496. https://doi.org/10.1016/j.molstruc.2021.130496 |
[63] | Thandapani, K., Kathiravan, M., Namasivayam, E., et al. (2018) Enhanced Larvicidal, Antibacterial, and Photocatalytic Efficacy of TiO2 Nanohybrids Green Synthesized Using the Aqueous Leaf Extract of Parthenium Hysterophorus. Environmental Science Pollution Research, 25, 10328-10339. https://doi.org/10.1007/s11356-017-9177-0 |
[64] | 郝梦玉, 于开源, 李思杰. 二氧化钛光催化(P25)涂膜对果蔬保鲜研究进展[J]. 农产品加工, 2019(8): 59-61. |
[65] | Latha, T.S., Reddy, M.C., Muthukonda, S.V., et al. (2017) in Vitro and in Vivo Evaluation of Anti-Cancer Activity: Shape-Dependent Properties of TiO2 Nanostructures. Materials Science Engineering: C, 78, 969-977. https://doi.org/10.1016/j.msec.2017.04.011 |
[66] | Rodríguez-González, V., Terashima, C., Fujishima, A., et al. (2019) Applications of Photocatalytic Titanium Dioxide-Based Nanomaterials in Sustainable Agriculture. Photochemistry Reviews, 40, 49-67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001 |
[67] | Abdennouri, M., Baalala, M., Galadi, A., et al. (2016) Photocatalytic Degradation of Pesticides by Titanium Dioxide and Titanium Pillared Purified Clays. Arabian Journal of Chemistry, 9, S313-S318. https://doi.org/10.1016/j.arabjc.2011.04.005 |
[68] | El-Shafai, N.M., El-Khouly, M.E., El-Kemary, M., et al. (2019) Fabrication and Characterization of Graphene Oxide-Titanium Dioxide Nanocomposite for Degradation of Some Toxic Insecticides. Journal of Industrial Engineering Chemistry, 69, 315-323. https://doi.org/10.1016/j.jiec.2018.09.045 |
[69] | Li, W., Elzatahry, A., Aldhayan, D., et al. (2018) Core-Shell Structured Titanium Dioxide Nanomaterials for Solar Energy Utilization. Chemical Society Reviews, 47, 8203-8237. https://doi.org/10.1039/C8CS00443A |
[70] | Chen, X. and Selloni, A. (2014) Introduction: Titanium Dioxide (TiO2) Nanomaterials. Chemical Reviews, 114, 9281-9282. https://doi.org/10.1021/cr500422r |
[71] | Ombaka, L.M., Curti, M., Mcgettrick, J.D., et al. (2020) Nitrogen/Carbon-Coated Zero-Valent Copper as Highly Efficient Co-Catalysts for TiO2 Applied in Photocatalytic and Photoelectrocatalytic Hydrogen Production. ACS Applied Materials Interfaces, 12, 30365-30380. https://doi.org/10.1021/acsami.0c06880 |