In accordance with current philosophical opinions, four classical and one more recently proposed types of methods frequently used in theoretical natural science are specified here together with the corresponding sources of inspiration. More precisely, abstract models, thought experiments, mathematical hypotheses and metaphors are dealt with here as classical types of methods, whereas hybrids of mathematical hypotheses and thought experiments represent more recent methodic group. In addition, this paper describes the relationships of the introduced types of methods to the (i) three-floor hierarchy of scientific theories, (ii) examples of ancient or recent discoveries and (iii) recent usage of computers.
References
[1]
Ado, A. V., Afanasjev, V. G., Afanasjev, V. S., Altman, V. V., Ancyferovová, L. I., Anikejev, N. P., Antipinová, G. S., Arzakaňan, C. G., Asmus, V. F., Baller, E. A., & Zybkovec, V. F. (1981). Philosophical Dictionary. Svoboda.
[2]
Aguinis, H., Beltran, J. R., Archibold, E. E., Esther, L. J., & Darryl, B. R. (2023). Thought Experiments: Review and Recommendations. Journal of Organizational Behaviour, 44, 1-17. https://doi.org/10.1002/job.2658
[3]
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular Biology of the Cell (5th ed.). Garland Science. https://doi.org/10.1201/9780203833445
[4]
Ali, A. M., & Kunugi, H. (2021). Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of in Silico, in Vitro, and Clinical Studies. Molecules, 26, Article No. 1232. https://doi.org/10.3390/molecules26051232
[5]
Altland, A., & Haake, F. (2012). Quantum Chaos and Effective Thermalization. Physical Review Letters, 108, Article ID: 073601. https://doi.org/10.1103/PhysRevLett.108.073601
[6]
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
[7]
Amelino-Camelia, G. (2001). A Phenomenological Description of Space-Time Noise in Quantum Gravity. Nature, 410, 1065-1067. https://doi.org/10.1038/35074035
[8]
Apertet, Y., Ouerdane, H., Goupil, C., & Lecoeur, P. (2014). Revisiting Feynman’s Ratchet with Thermoelectric Transport Theory. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 90, Article ID: 012113. https://doi.org/10.1103/PhysRevE.90.012113
[9]
Arcon, J. P., Turjanski, A. G., Martí, M. A., & Forli, S. (2021). Biased Docking for Protein-Ligand Pose Prediction. Methods in Molecular Biology, 2266, 39-72. https://doi.org/10.1007/978-1-0716-1209-5_3
[10]
Aristotle (1961). Prior Analytics. Czechoslovak Academy of Science Publishing.
[11]
Asimov, I. (1994). Asimov’s Chronology of Science and Discovery (Updated and Illustrated). HarperCollins Publishers.
[12]
Aspect, A. (2017). From Huygens’ Waves to Einstein’s Photons: Weird Light. Comptes Rendus Physique, 18, 498-503. https://doi.org/10.1016/j.crhy.2017.11.005
[13]
Attard, P. (2006). Theory for Non-Equilibrium Statistical Mechanics. Physical Chemistry Chemical Physics, 8, 3585-3611. https://doi.org/10.1039/b604284h
[14]
Balescu, R. (1975). Equilibrium and Nonequilibrium Statistical Mechanics. Wiley.
[15]
Barrow, J. D. (1997). Theories of Everything. The Quest for Ultimate Explanation. Mladá Fronta.
[16]
Becker, M., & Schwarz, J. H. (2007). String Theory and M-Theory: A Modern Introduction. Cambridge University Press. https://www.cambridge.org/9780521860697 https://doi.org/10.1017/CBO9780511816086
[17]
Bečvář, J. (2012). Archimédés—Life and Work. In Z. Halas (Ed.), Archimédés (pp. 1-21). Matfyzpress (Charles University). http://dml.cz/dmlcz/402374
[18]
Bergeron, K., Abdi, S., DeCorby, K., Mensah, G., Rempel, B., & Manson, H. (2017). Theories, Models and Frameworks Used in Capacity Building Interventions Relevant to Public Health: A Systematic Review. BMC Public Health, 17, Article No. 914. https://doi.org/10.1186/s12889-017-4919-y
[19]
Berryman, S. (2022). Ancient Atomism. In E. N. Zalta, & U. Nodelman (Eds.), The Stanford Encyclopedia of Philosophy (Winter 2022 Edition). Stanford University. https://plato.stanford.edu/archives/win2022/entries/atomism-ancient/
[20]
Boček, L. (1976). Tensor Calculus. Mathematical Seminaries, SNTL.
[21]
Bohmer, M. (2012). Design Patterns in PHP. Computer Press.
[22]
Bolmatov, D., Kinnun, J. J., Katsaras, J., & Lavrentovich, M. O. (2020). Phonon-Mediated Lipid Raft Formation in Biological Membranes. Chemistry and Physics of Lipids, 232, Article ID: 104979. https://doi.org/10.1016/j.chemphyslip.2020.104979
[23]
Boregowda, S. C., Tiwari, S. N., Chaturvedi, S. K., & Redondo, D. R. (1997). Analysis and Quantification of Mental Stress and Fatigue Using Maxwell Relations from Thermodynamics. Journal of Human Ergology, 26, 7-16.
[24]
Brdička, R., & Dvořák, J. (1977). Fundamentals of Physical Chemistry. Academia.
[25]
Buchsteiner, A., Gauss, T., Dante, S., & Dencher, N. A. (2010). Alzheimer’s Disease Amyloid-Beta Peptide Analogue Alters the Ps-Dynamics of Phospholipid Membranes. Biochimica et Biophysica Acta, 1798, 1969-1976. https://doi.org/10.1016/j.bbamem.2010.06.024
[26]
Burge, T. (1979). Individualism and the Mental. Midwest Studies in Philosophy, 4, 73-121. https://doi.org/10.1111/j.1475-4975.1979.tb00374.x
[27]
Burgess, C., & Quevedo, F. (2007). The Great Cosmic Roller-Coaster Ride. Scientific American, 297, 52-59. https://doi.org/10.1038/scientificamerican1107-52
[28]
Busseniers, E., Veloz, T., & Heylighen, F. (2021). Goal Directedness, Chemical Organizations, and Cybernetic Mechanisms. Entropy, 23, Article No. 1039. https://doi.org/10.3390/e23081039
[29]
Calisher, C. H. (2007). Taxonomy: What’s in a Name? Doesn’t a Rose by Any Other Name Smell as Sweet? Croatian Medical Journal, 48, 268-270.
[30]
Černík, V. (1972). Thought Experiment and Production of Ideas. Pravda.
[31]
Černík, V., Farkašová, E., & Viceník, J. (1980). Theory of Knowledge. Bratislava, Czechoslovakia, Pravda.
[32]
Chapman, R. L., & Andurkar, S. V. (2022). A Review of Natural Products, Their Effects on SARS-CoV-2 and Their Utility as Lead Compounds in the Discovery of Drugs for the Treatment of COVID-19. Medicinal Chemistry Research, 31, 40-51. https://doi.org/10.1007/s00044-021-02826-2
[33]
Chytil, M. (1984). Automata and Grammars. Mathematical Seminaries, SNTL.
[34]
Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27, 289-350. https://doi.org/10.1016/0004-3702(85)90016-5
[35]
Clark, L. A., & van Vlijmen, H. W. (2008). A Knowledge-Based Forcefield for Protein-Protein Interface Design. Proteins, 70, 1540-1550. https://doi.org/10.1002/prot.21694
[36]
Clavelli, L., & Jones, S. T. (1989). Finiteness of the Bosonic String in Fewer than 26 Dimensions. Physical Review D, Particles and Fields, 39, 3795-3797. https://doi.org/10.1103/PhysRevD.39.3795
[37]
Cottet, N., Jezouin, S., Bretheau, L., Campagne-Ibarcq, P., Ficheux, Q., Anders, J., Auffèves, A., Azouit, R., Rouchon, P., & Huard, B. (2017). Observing a Quantum Maxwell Demon at Work. Proceedings of National Academy of Sciences, USA, 114, 7561-7564. https://doi.org/10.1073/pnas.1704827114
[38]
Damour, T., Henneaux, M., & Nicolai, H. (2002). E10 and a Small Tension Expansion of M Theory. Physical Review Letters, 89, Article ID: 221601. https://doi.org/10.1103/PhysRevLett.89.221601
[39]
Devkota, P., Mohanty, S. D., & Manda, P. (2022). A Gated Recurrent Unit Based Architecture for Recognizing Ontology Concepts from Biological Literature. BioData Mining, 15, Article No. 22. https://doi.org/10.1186/s13040-022-00310-0
[40]
Dörner, T., Foster, S. J., Brezinschek, H. P., & Lipsky, P. E. (1998). Analysis of the Targeting of the Hypermutational Machinery and the Impact of Subsequent Selection on the Distribution of Nucleotide Changes in Human VHDJH Rearrangements. Immunological Reviews, 162, 161-171. https://doi.org/10.1111/j.1600-065X.1998.tb01439.x
[41]
Dunbrack, R. L. Jr. (1999). Comparative Modeling of CASP3 Targets Using PSI-BLAST and SCWRL. Proteins, Supplement, 3, 81-87. https://doi.org/10.1002/(SICI)1097-0134(1999)37:3 <81::AID-PROT12>3.0.CO;2-R
[42]
Duquette, M. L., Huber, M. D., & Maizels, N. (2007). G-Rich Proto-Oncogenes Are Targeted for Genomic Instability in B-Cell Lymphomas. Cancer Research, 67, 2586-2594. https://doi.org/10.1158/0008-5472.CAN-06-2419
[43]
Dvořák, I., Maršík, F., & Andrej, L. (1982). Biothermodynamics. Academia.
[44]
El Naschie, M. S. (2004). A Review of E Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons and Fractals, 19, 209-236. https://doi.org/10.1016/S0960-0779(03)00278-9
[45]
Ermentrout, G. B., & Edelstein-Keshet, L. (1996). Cellular Automata Approaches to Biological Modeling. Journal of Theoretical Biology, 160, 97-133. https://doi.org/10.1006/jtbi.1993.1007
[46]
Ernst, F. (2015). Thought Experiments in Historiographic Function: Max Weber on Eduard Meyer and the Question of Counterfactuality. Berichte zur Wissenschaftsgeschichte, 38, 77-91. https://doi.org/10.1002/bewi.201501702
[47]
Evers, A., Gohlke, H., & Klebe, G. (2003). Ligand-Supported Homology Modelling of Protein Binding-Sites Using Knowledge-Based Potentials. Journal of Molecular Biology, 334, 327-345. https://doi.org/10.1016/j.jmb.2003.09.032
[48]
Ewe, C. K., Sommermann, E. M., Kenchel, J., Flowers, S. E., Maduro, M. F., Joshi, P. M., & Rothman, J. H. (2022). Feedforward Regulatory Logic Controls the Specification-to-Differentiation Transition and Terminal Cell Fate during Caenorhabditis elegans Endoderm Development. Development, 149, dev200337. https://doi.org/10.1242/dev.200337
[49]
Fajkus, B. (1997). Recent Philosophy and Methodology of Science. Filosofia.
[50]
Falissard, B. (2011). A Thought Experiment Reconciling Neuroscience and Psychoanalysis. Journal of Physiology, Paris, 105, 201-206. https://doi.org/10.1016/j.jphysparis.2011.07.007
[51]
Felsenstein, J. (1981). Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution, 17, 368-376. https://doi.org/10.1007/BF01734359
[52]
Fenske, D. B., & Jarrell, H. C. (1991). Phosphorus-31 Two-Dimensional Solid-State Exchange NMR. Application to Model Membrane and Biological Systems. BiophysicalJournal, 59, 55-69. https://doi.org/10.1016/S0006-3495(91)82198-1
[53]
Feynman, R. P. (1966). The Development of the Space-Time View of Quantum Electrodynamics. Science, 153, 699-708. https://doi.org/10.1126/science.153.3737.699
[54]
Fowler, M. (2009). UML Distilled: A Brief Guide to Standard Object Modeling Language (3rd ed.). Grada Publishing.
[55]
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2003). Design Patterns—Elements of Reusable Object-Oriented Software. Grada Publishing.
[56]
Ganong, W. F. (2005). Review of Medical Physiology. Galén.
[57]
Gemovic, B., Sumonja, N., Davidovic, R., Perovic, V., & Veljkovic, N. (2019). Mapping of Protein-Potein Interactions: Web-Based Resources for Revealing Interactomes. Current Medicinal Chemistry, 26, 3890-3910. https://doi.org/10.2174/0929867325666180214113704
[58]
Godzik, A., Skolnick, J., & Kolinski, A. (1993). Regularities Interaction Patterns of Globular Proteins. Protein Engineering, 6, 801-810. https://doi.org/10.1093/protein/6.8.801
[59]
Green, E. D., Watson, J. D., & Collins, F. S. (2015). Human Genome Project: Twenty-Five Years of Big Biology. Nature, 526, 29-31. https://doi.org/10.1038/526029a
[60]
Guo, J., Pu, X., Lin, Y., & Leung, H. (2006). Protein Subcellular Localization Based on PSI-BLAST and Machine Learning. Journal of Bioinformatics and Computational Biology, 4, 1181-1195. https://doi.org/10.1142/S0219720006002405
[61]
Harper, H. A. (1977). Review of Physiological Chemistry. Avicenum.
[62]
Hatina, J., & Sykes, B. (1999). Medical Genetics. Problems and Approaches. Academia.
[63]
Hehmeyer, I., & Khan, A. (2007). Islam’s Forgotten Contributions to Medical Science. CMAJ, 176, 1467-1468. https://doi.org/10.1503/cmaj.061464
[64]
Helfrich, W. (1973). Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Zeitschrift für Naturforschung C, Journal of Biosciences, 28, 693-703. https://doi.org/10.1515/znc-1973-11-1209
[65]
Heraclitus (2009). Heraclitus from Fragments DK22B (On-Line Accessible Direct Fragments of Heraclitus).
[66]
Hirai, M., Komára, R., Takeuchi, K., Sugiyama, M., Kasahara, K., Ohta, N., Farago, B., Stadler, A., & Zaccai, G. (2013). Change of Dynamics of Raft-Model Membrane Induced by Amyloid-β Protein Binding. The European Physical Journal E, Soft Matter, 36, 74. https://doi.org/10.1140/epje/i2013-13074-3
[67]
Hochberg, D., & Ribó, J. M. (2021). Entropic Analysis of Bistability and the General Evolution Criterion. Physical Chemistry Chemical Physics, 23, 14051-14063. https://doi.org/10.1039/D1CP01236C
[68]
Horák, J., & Kotyk, A. (1977). Enzyme Kinetics. Academia.
[69]
Hordijk, W. (2017). Autocatalytic Confusion Clarified. Journal of Theoretical Biology, 435, 22-28. https://doi.org/10.1016/j.jtbi.2017.09.003
[70]
Hu, W., Begum, N. A., Mondal, S., Stanlie, A., & Honjo, T. (2015). Identification of DNA Cleavage-and Recombination-Specific hnRNP Cofactors for Activation-Induced Cytidine Deaminase. Proceedings of the National Academy of Sciences, USA, 112, 5791-5796. https://doi.org/10.1073/pnas.1506167112
[71]
James, C. W., Falcke, H., Huege, T., & Ludwig, M. (2011). General Description of Electromagnetic Radiation Processes Based on Instantaneous Charge Acceleration in “Endpoints”. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 84, Article ID: 056602. https://doi.org/10.1103/PhysRevE.84.056602
[72]
Janout, V. (1995). Fundaments of Epidemiology. University of Palacky Publishing.
[73]
Jerne, N. K. (1984). Idiotypic Networks and Other Preconceived Ideas. Immunological Reviews, 79, 5-24. https://doi.org/10.1111/j.1600-065X.1984.tb00484.x
[74]
Jerne, N. K. (1985). The Generative Grammar of the Immune System. EMBO Journal, 4, 847-852. https://doi.org/10.1002/j.1460-2075.1985.tb03709.x
[75]
Jost, J. D., Home, J. P., Amini, J. M., Hanneke, D., Ozeri, R., Langer, C., Bollinger, J. J., Leibfried, D., & Wineland, D. J. (2009). Entangled Mechanical Oscillators. Nature, 459, 683-685. https://doi.org/10.1038/nature08006
[76]
Jura, P. (2003). Fundamentals of Fuzzy Logics for Control and Modeling. VUTIUM.
[77]
Kapitza, P. L., & Lifshitz, E. M. (1969). Lev Davydovitch Landau 1908-1968. Biographical Memoirs of Fellows of the Royal Society, 15, 140-158. https://doi.org/10.1098/rsbm.1969.0007
[78]
Karl, F. (2012). A Free Energy Principle for Biological Systems. Entropy, 14, 2100-2121. https://doi.org/10.3390/e14112100
[79]
Kashyap, P., Thakur, M., Singh, N., Shikha, D., Kumar, S., Baniwal, P., Yadav, Y. S., Sharma, M., Sridhar, K., Inbaraj, B. S. (2022). In Silico Evaluation of Natural Flavonoids as a Potential Inhibitor of Coronavirus Disease. Molecules, 27, Article No. 6374. https://doi.org/10.3390/molecules27196374
[80]
Kaur, H., & Raghava, G. P. (2004). Prediction of Alpha-Turns in Proteins Using PSI-BLAST Profiles and Secondary Structure Information. Proteins, 55, 83-90. https://doi.org/10.1002/prot.10569
[81]
Keller, B., Hünenberger, P., & van Gunsteren, W. F. (2011). An Analysis of the Validity of Markov State Models for Emulating the Dynamics of Classical Molecular Systems and Ensembles. Journal of Chemical Theory and Computation, 7, 1032-1044. https://doi.org/10.1021/ct200069c
[82]
Kessidy, F. C. (1976). From Myth to Logos. Pravda.
[83]
Killingback, T., & Doebeli, M. (1998). Self-Organized Criticality in Spatial Evolutionary Game Theory. Journal of Theoretical Biology, 191, 335-340. https://doi.org/10.1006/jtbi.1997.0602
[84]
Kleppner, D., & Jackiw, R. (2000). One Hundred Years of Quantum Physics. Science, 289, 893-898. https://doi.org/10.1126/science.289.5481.893
[85]
Klíč, A., Volka, K., & Dubcová, M. (2012). Fourier’s Transformation with Examples from Infrared Spectroscopy. UCT Publishing. https://doi.org/10.1016/j.imlet.2014.09.014
[86]
Kobayashi, Y., Ito, Y., Ostapenko, V. V., Sakai, M., Matsushita, N., Imai, K., Shimizu, K., Aruga, A., & Tanigawa, K. (2014). Fever-Range Whole-Body Heat Treatment Stimulates Antigen-Specific T-cell Responses in Humans. Immunological Letters, 162, 256-261.
[87]
Kokowski, M. (2006). Nicholas Copernicus in Focus of Interdisciplinary Research: An Outline of Main Results. Organon, 35, 73-84. https://www.researchgate.net/publication/263734448
[88]
Kolář, J. (2009). Theoretical Informatics. CTU Publishing.
[89]
Krauzlis, R. J., Wang, L., Yu, G., & Katz, L. N. (2023). What Is Attention? Wiley Interdisciplinary Reviews. Cognitive Science, 14, e1570. https://doi.org/10.1002/wcs.1570
[90]
Kubrycht, J. (1985). Thought Experiment in Biology. Selected Philosophical Articles of PhD Students Written at the School Year 1983/1984 (pp. 42-49). Czechoslovak Academy of Sciences.
[91]
Kubrycht, J., & Novotná, J. (2014). Sequence-Based Prediction of Linear Autoepitopes Involved in Pathogenesis of IPAH and the Corresponding Organism Sources of Molecular Mimicry. International Journal of Bioinformatics Research and Applications, 10, 587-612. https://doi.org/10.1504/IJBRA.2014.065244
[92]
Kubrycht, J., & Sigler, K. (2020). Conserved Immunoglobulin Domain Similarities of Higher Plant Proteins. Computational Molecular Bioscience, 10, 12-44. https://doi.org/10.4236/cmb.2020.101002
[93]
Kubrycht, J., Sigler, K., & Souček, P. (2012). Virtual Interactomics of Proteins from Biochemical Standpoint. Molecular Biology International, 2012, Article ID: 976385. https://doi.org/10.1155/2012/976385
[94]
Kubrycht, J., Sigler, K., Ruzicka, M., Soucek, P., Borecký, J., & Jezek, P. (2006). Ancient Phylogenetic Beginnings of Immunoglobulin Hypermutation. Journal of Molecular Evolution, 63, 691-706. https://doi.org/10.1007/s00239-006-0051-9
[95]
Kubrycht, J., Sigler, K., Souček, P., & Hudeček, J. (2013). Structures Composing Protein Domains. Biochimie, 95, 1511-1524. https://doi.org/10.1016/j.biochi.2013.04.001
[96]
Kubrycht, J., Sigler, K., Souček, P., & Hudeček, J. (2016). Antibody-Like Phosphorylation Sites in Focus of Statistically Based Bilingual Approach. Computational Molecular Bioscience, 6, 1-22. https://doi.org/10.4236/cmb.2016.61001
[97]
Kugler, F. B. (2018). Counting Feynman Diagrams via Many-Body Relations. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 98, Article ID: 023303. https://doi.org/10.1103/PhysRevE.98.023303
[98]
Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of Chicago Press.
[99]
Lakatos, I. (1970). History of Science and Its Rational Reconstructions. In Proceedings of the Biennial Meeting of the Philosophy of Science Association (pp. 91-136). Cambridge University Press. https://doi.org/10.1086/psaprocbienmeetp.1970.495757
[100]
Lakatos, I. (1976). A Renaissance of Empiricism in the Recent Philosophy of Mathematics. British Journal for the Philosophy of Science, 27, 201-223. http://bjps.oxfordjournals.org https://doi.org/10.1093/bjps/27.3.201
[101]
Lakhani, B., Thayer, K. M., Hingorani, M. M., & Beveridge, D. L. (2017). Evolutionary Covariance Combined with Molecular Dynamics Predicts a Framework for Allostery in the MutS DNA Mismatch Repair Protein. The Journal of Physical Chemistry B, 121, 2049-2061. https://doi.org/10.1021/acs.jpcb.6b11976
[102]
Landau, L. D., & Lifshitz, E. M. (1973). Theoretical Physics. II Theory of Field. Nauka.
[103]
Landmann, S., Preuss, N., & Behn, U. (2017). Self-Tolerance and Autoimmunity in a Minimal Model of the Idiotypic Network. Journal of Theoretical Biology, 426, 17-39. https://doi.org/10.1016/j.jtbi.2017.05.004
[104]
Laozi (1997). Tao Te Tiang. DharmaGaia.
[105]
Larsson, J. K., Wadströmer, N., Hermanson, O., Lendahl, U., & Forchheimer, R. (2011). Modelling Cell Lineage Using a Meta-Boolean Tree Model with a Relation to Gene Regulatory Networks. Journal of Theoretical Biology, 268, 62-76. https://doi.org/10.1016/j.jtbi.2010.10.003
[106]
Lehner, C., & Wendt, H. (2017). Mechanics in the Querelle des Anciens et des Modernes. Isis, 108, 26-39. https://doi.org/10.1086/691412
[107]
Lepš, J., & Šmilauer, P. (2016). Biostatistics. Episteme.
[108]
Lewicka, M., Henrykowska, G., Zawadzka, M., Rutkowski, M., Pacholski, K., & Buczyński, A. (2017). Impact of Electromagnetic Radiation Emitted by Monitors on Changes in the Cellular Membrane Structure and Protective Antioxidant Effect of Vitamin A—In Vitro Study. International Journal of Occupational Medicine and Environmental Health, 30, 695-703. https://doi.org/10.13075/ijomeh.1896.00851
[109]
Long, J. C., Chan, H. W., Churnside, A. B., Gulbis, E. A., Varney, M. C., & Price, J. C. (2003). Upper Limits to Submillimetre-Range Forces from Extra Space-Time dimensions. Nature, 421, 922-955. https://doi.org/10.1038/nature01432
[110]
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Science, 20, 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[111]
Maartens, R. (2004). Brane-World Gravity. Living Reviews in Relativity, 7, Article No. 7. https://doi.org/10.12942/lrr-2004-7
[112]
Mace, T. A., Zhong, L., Kilpatrick, C., Zynda, E., Lee, C. T., Capitano, M., Minderman, H., & Repasky, E. A. (2011). Differentiation of CD8 T Cells into Effector Cells Is Enhanced by Physiological Range Hyperthermia. Journal of Leukocyte Biology, 90, 951-962. https://doi.org/10.1189/jlb.0511229
[113]
Machamer, P., & Miller, D. M. (2021). Galileo Galilei. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2021 Edition). Stanford University. https://plato.stanford.edu/archives/sum2021/entries/galileo/
[114]
Major, L. & Sobotka, M. (1977). Worldview Significance of Descartes’ Philosophy. Charles University.
[115]
Martin, C. (2023). Histories of Medieval Plague in Renaissance Italy. Journal of the History of Medicine and Allied Sciences, 78, 131-148. https://doi.org/10.1093/jhmas/jrad001
[116]
Martins, R. A. (2003). Resistance to the Discovery of Electromagnetism: Ørsted and the Symmetry of the Magnetic Field. In F. Bevilacqua, & E. Giannetto (Eds.), Volta and the History of Electricity (pp. 245-265). Editore Ulrico Hoepli.
[117]
Marusic, I., & Broomhall, S. (2021). Leonardo da Vinci and Fluid Mechanics. Annual Review of Fluid Mechanics, 53, 1-25. https://doi.org/10.1146/annurev-fluid-022620-122816
[118]
Míček, L. (1981). Thought Experiment. Ph.D. Theses, Comenius University.
[119]
Michaelis, L., Menten, M. L., Johnson, K. A., & Goody, R. S. (2011). The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry, 50, 8264-8269. https://doi.org/10.1021/bi201284u
[120]
Misra, S. K. (2007). Simulation of Slow-Motion CW EPR Spectrum Using Stochastic Liouville Equation for an Electron Spin Coupled to Two Nuclei with Arbitrary Spins: Matrix Elements of the Liouville Superoperator. Journal of Magnetic Resonance (San Diego, Calif.: 1997), 189, 59-77. https://doi.org/10.1016/j.jmr.2007.08.004
[121]
Möller, R., & Schenck, W. (2008). Bootstrapping Cognition from Behavior—A Computerized Thought Experiment. Cognitive Science, 32, 504-542. https://doi.org/10.1080/03640210802035241
[122]
Mulliken, R. S. (1967). Spectroscopy, Molecular Orbitals, and Chemical Bonding. Science, 157, 13-24. https://doi.org/10.1126/science.157.3784.13
[123]
Murase, M., & Matsuo, M. (1991). Mathematical Modeling for the Aging Process: Normal, Abnormal and Self-Terminating Phenomena in Spatio-Temporal Organization. Mechanisms of Ageing and Development, 60, 99-112. https://doi.org/10.1016/0047-6374(91)90113-E
[124]
Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18, 87-127. https://doi.org/10.1016/0004-3702(82)90012-1
[125]
Nilsen, P. (2015). Making Sense of Implementation Theories, Models and Frameworks. Implementation Science, 10, Article No. 53. https://doi.org/10.1186/s13012-015-0242-0
[126]
Nojiri, S. (1987). Heterotic Strings from the Bosonic String in 26 Dimensions. Physical Review D, 35, 2466-2473. https://doi.org/10.1103/PhysRevD.35.2466
[127]
Odales, J., Guzman Valle, J., Martínez-Cortés, F., & Manoutcharian, K. (2020). Immunogenic Properties of Immunoglobulin Superfamily Members within Complex Biological Networks. Cellular Immunology, 358, Article ID: 104235. https://doi.org/10.1016/j.cellimm.2020.104235
[128]
Oussar, Y., & Dreyfus, G. (2001). How to Be a Gray Box: Dynamic Semi-Physical Modeling. Neural Networks, 14, 1161-1172. https://doi.org/10.1016/S0893-6080(01)00096-X
[129]
Park, J. H., & Sugimoto, S. (2020). String Theory and Non-Riemannian Geometry. Physical Review Letters, 125, Article ID: 211601. https://doi.org/10.1103/PhysRevLett.125.211601
[130]
Philippe, H. (1993). MUST, a Computer Package of Management Utilities for Sequences and Trees. Nucleic Acids Research, 21, 5264-5272. https://doi.org/10.1093/nar/21.22.5264
[131]
Prigogine, I. (1978). Time, Structure, and Fluctuations. Science, 201, 777-785. https://doi.org/10.1126/science.201.4358.777
[132]
Pross, H. F., & Maroun, J. A. (1984). The Standardization of NK Cell Assays for Use in Studies of Biological Response Modifiers. Journal of Immunological Methods, 68, 235-249. https://doi.org/10.1016/0022-1759(84)90154-6
[133]
Rahman, M. M., Islam, M. R., Akash, S., Mim, S. A., Rahaman, M. S., Emran, T. B., Akkol, E. K., Sharma, R., Alhumaydhi, F. A., Sweilam, S. H., Hossain, M. E., Ray, T. K., Sultana, S., Ahmed, M., Sobarzo-Sánchez, E., & Wilairatana, P. (2022). In Silico Investigation and Potential Therapeutic Approaches of Natural Products for COVID-19: Computer-Aided Drug Design Perspective. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 929430. https://doi.org/10.3389/fcimb.2022.929430
[134]
Richardson, P. L. (2019). Leonardo da Vinci’s Discovery of the Dynamics Soaring by Birds in Wind Shear. Notes and Records, 73, 285-301. https://doi.org/10.1098/rsnr.2018.0024
[135]
Rickles, D. (2014). A Brief History of String Theory: From Dual Models to M-Theory. Springer Verlag. https://doi.org/10.1007/978-3-642-45128-7
[136]
Roberts, S. A., Gordenin, D. A. (2014). Hypermutation in Human Cancer Genomes: Footprints and Mechanisms. Nature Reviews on Cancer, 14, 786-800. https://doi.org/10.1038/nrc3816
[137]
Rodionov, M. A., & Johnson, M. S. (1994). Residue-Residue Contact Substitution Probabilities Derived from Aligned Three-Dimensional Structures and the Identification of Common Folds. Protein Science, 3, 2366-2377. https://doi.org/10.1002/pro.5560031221
[138]
Rogozin, I. B., & Kolchanov, N. A. (1992). Somatic Hypermutagenesis in Immunoglobulin Genes. II. Influence of Neighbouring Base Sequences on Mutagenesis. Biochimica Biophysica Acta, 1171, 11-18. https://doi.org/10.1016/0167-4781(92)90134-L
[139]
Saitou, N., & Nei, M. (1987). The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406-425.
[140]
Sanapalli, B. K. R., Yele, V., Baldaniya, L., & Karri, V. V. S. R. (2022). Identification of Novel Protein Kinase C-βII Inhibitors: Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Studies. Journal of Molecular Modeling, 28, 117. https://doi.org/10.1007/s00894-022-05104-z
[141]
Sarbaz, Y., & Pourakbari, H. (2016). A Review of Presented Mathematical Models in Parkinson’s Disease: Black-and Gray-Box Models. Medical & Biological Engineering & Computing, 54, 855-868. https://doi.org/10.1007/s11517-015-1401-9
[142]
Scott, T. C. (2022). From Modified Newtonian Dynamics to Superfluid Vacuum Theory. Entropy (Basel), 25, Article No. 12. https://doi.org/10.3390/e25010012
[143]
Shilova, O. N., Tsyba, D. L., & Shilov, E. S. (2022). Mutagenic Activity of AID/APOBEC Deaminases in Antiviral Defense and Carcinogenesis. Molecular Biology, 56, 46-58. https://doi.org/10.1134/S002689332201006X
[144]
Shoja, M. M., Agutter, P. S., Loukas, M., Benninger, B., Shokouhi, G., Namdar, H., Ghabili, K., Khalili, M., & Tubbs, R. S. (2013). Leonardo da Vinci’s Studies of the Heart. InternationalJournal of Cardiology, 167, 1126-1133. https://doi.org/10.1016/j.ijcard.2012.09.078
[145]
Singer, S. J., & Nicolson, G. L. (1972). The Fluid Mosaic Model of the Structure of Cell membranes. Science, 175, 720-731. https://doi.org/10.1126/science.175.4023.720
[146]
Smith, J. M., & Szathmary, E. (1995). The Major Transitions in Evolution. W. H. Freeman and Company Limited.
[147]
Šnorek, M. (2002). Neural Networks and Neuro-Computers. CTU Publishing.
[148]
Šolcová, A. (2017). Chapters from History of Mathematics and Informatics. CTU Publishing.
[149]
Sourdis, J., & Nei, M. (1988). Relative Efficiencies of the Maximum Parsimony and Distance-Matrix Methods in Obtaining the Correct Phylogenetic Tree. Molecular Biology and Evolution, 5, 298-311.
[150]
Stableford, B. (2003). Science Fiction before the Genre. In E. James, & F. Mendlesohn (Eds.), The Cambridge Companion to Science Fiction (pp. 15-31). Cambridge University Press. https://doi.org/10.1017/CCOL0521816262.002
[151]
Stachová, J. (1993). Metaphor, Intuition, Science. In J. Stachová, & J. Nosek (Eds.), Intuition in Science and Philosophy (pp. 299-308). Philosophical Institute of CAS.
[152]
Standley, D. M., Yamashita, R., Kinjo, A. R., Toh, H., & Nakamura, H. (2010). SeSAW: Balancing Sequence and Structural Information in Protein Functional Mapping. Bioinformatics, 26, 1258-1259. https://doi.org/10.1093/bioinformatics/btq116
[153]
Štecha, J. (2003). Theory of Dynamical Systems. CTU Publishing.
[154]
Steeb, W., Villet, C. M., & Kunick, A. (1985). Quantum Chaos and Two Exactly Solvable Second-Quantized Models. Physical Review A, General Physics, 32, 1232-1234. https://doi.org/10.1103/PhysRevA.32.1232
[155]
Steele, J. (2019). Explaining Babylonian Astronomy. Isis, 110, 292-295. https://doi.org/10.1086/703532
[156]
Stutz, A. J. (2014). Modeling the Pre-Industrial Roots of Modern Super-Exponential Population Growth.PLOS ONE, 9, e105291. https://doi.org/10.1371/journal.pone.0105291
[157]
Tarasov, V. E. (2004). Fractional Generalization of Liouville Equations. Chaos, 14, 123-127. https://doi.org/10.1063/1.1633491
[158]
Tarkhov, A. E., Alla, R., Ayyadevara, S., Pyatnitskiy, M., Menshikov, L. I., Shmookler Reis, R. J., & Fedichev, P. O. (2019). A Universal Transcriptomic Signature of Age Reveals the Temporal Scaling of Caenorhabditis elegans Aging Trajectories. Scientific Reports, 9, Article No. 7368. https://doi.org/10.1038/s41598-019-43075-z
[159]
Tateno, Y., Nei, M., & Tajima, F. (1982). Accuracy of Estimated Phylogenetic Trees from Molecular Data. I. Distantly Related Species. Journal of Molecular Evolution, 18, 387-404. https://doi.org/10.1007/BF01840887
[160]
Terayama, K., Sumita, M., Tamura, R., & Tsuda, K. (2021). Black-Box Optimization for Automated Discovery. Accounts of Chemical Research, 54, 1334-1346. https://doi.org/10.1021/acs.accounts.0c00713
[161]
Thorvaldsen, S. (2010). Early Numerical Analysis in Kepler’s New Astronomy. Science in Context, 23, 39-63. https://doi.org/10.1017/S0269889709990238
[162]
Toigo, L., Dos Santos Teodoro, E. I., Guidi, A. C., Gancedo, N. C., Petruco, M. V., Melo, E. B., Tonin, F. S., Fernandez-Llimos, F., Chierrito, D., de Mello, J. C. P., de Medeiros Araújo, D. C., & Sanches, A. C. C. (2023). Flavonoid as Possible Therapeutic Targets against COVID-19: A Scoping Review of in Silico Studies. Daru, 31, 51-68. https://doi.org/10.1007/s40199-023-00461-3
[163]
Tomilin, K. A. (1999). Natural Systems of Units. To the Centenary Anniversary of the Planck System. In Proceedings of the XXII Workshop on High Energy Physics and Field Theory (pp. 287-296). IHEP. http://web.ihep.su/library/pubs/tconf99/ps/tomil.pdf
[164]
Trevors, J. T. (2006). The Big Bang, Superstring Theory and the Origin of Life on the Earth. Theory in Biosciences, 124, 403-412. https://doi.org/10.1016/j.thbio.2005.04.002
[165]
Turing, A. (1952). The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 237, 37-72. https://doi.org/10.1098/rstb.1952.0012
[166]
Unčovský, L. (1980). Stochastic Models of Operational Analysis. Alfa.
[167]
Van Dyck, M., & Malara, I. (2019). Renaissance Concept of Impetus. In M. Sgarbi (Ed.), Encyclopedia of Renaissance Philosophy (pp. 1-6). Springer. https://doi.org/10.1007/978-3-319-02848-4_261-1
[168]
Wang, C., Liu, Y., & Cao, J.-M. (2014). G Protein-Coupled Receptors: Extranuclear Mediators for the Non-Genomic Actions of Steroids. International Journal of Molecular Sciences, 15, 15412-15425. https://doi.org/10.3390/ijms150915412
[169]
Wang, L.-X. (1992). Fuzzy Systems Are Universal Approximations. In Proceedings of IEEE International Conference on Fuzzy Systems (pp. 1163-1170). IEEE.
[170]
Wang, Y. C., Wang, Y., Yang, Z. X., & Deng, N. Y. (2011). Support Vector Machine Prediction of Enzyme Function with Conjoint Triad Feature and Hierarchical Context. BMC Systems Biology, 5, S6. https://doi.org/10.1186/1752-0509-5-S1-S6
[171]
Watson, J. D., & Crick, F. H. (1953). Molecular Structure of Nucleic Acids; a Structure for Deoxyribose Nucleic Acid. Nature, 171, 737-738. https://doi.org/10.1038/171737a0
[172]
Wielinga, B., & Schreiber, G. (1990). KADS: Model Based KBS Development. In GWAI-90 14th German Workshop on Artificial Intelligence (pp. 322-323). Springer-Verlag. https://doi.org/10.1007/978-3-642-76071-6_36
[173]
Wildberg, C. (2021). John Philoponus. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2021 Edition). Stanford University. https://plato.stanford.edu/archives/win2021/entries/philoponus/
[174]
Wilson, P., Liu, Y. J., Banchereau, J., Capra, J. D., & Pascual, V. (1998). Amino Acid Insertions and Deletions Contribute to Diversify the Human Ig Repertoire. Immunological Reviews, 162, 143-151. https://doi.org/10.1111/j.1600-065X.1998.tb01437.x
[175]
Wiltsche, H. (2019). The Forever War: Understanding, Science Fiction, and Thought Experiments. Synthese, 230, 1-24.
[176]
Witt-Hansen, J. (1976). H. C. Örsted, Immanuel Kant, and the Thought Experiment. Danish Yearbook of Philosophy, 13, 48-65. https://doi.org/10.1163/24689300-01301004
[177]
Yamamoto, K., Wang, X. X., Tamaki, M., & Suzuki, K. (2019). The Second Offshore Production of Methane Hydrate in the Nankai Trough and Gas Production Behavior from a Heterogeneous Methane Hydrate Reservoir. RSC Advances, 9, 25987-26013. https://doi.org/10.1039/C9RA00755E
[178]
Yeates, L. B. (2004). Thought Experimentation: A Cognitive Approach. Ph.D. Thesis, University of New South Wales.
[179]
Zeng, X., & Li, S. (2011). Multiscale Modeling and Simulation of Soft Adhesion and Contact of Stem Cells. Journal of the Mechanical Behavior of Biomedical Materials, 4, 180-189. https://doi.org/10.1016/j.jmbbm.2010.06.002
[180]
Zhu, K., Day, T., Warshaviak, D., Murrett, C., Friesner, R., & Pearlman, D. (2014). Antibody Structure Determination Using a Combination of Homology Modeling, Energy-Based Refinement, and Loop Prediction. Proteins, 82, 1646-1655. https://doi.org/10.1002/prot.24551
[181]
Zynda, E. R., Grimm, M. J., Yuan, M., Zhong, L., Mace, T. A., Capitano, M., Ostberg, J. R., Lee, K. P., Pralle, A., & Repasky, E. A. (2015). A Role for the Thermal Environment in Defining Co-Stimulation Requirements for CD4( ) T Cell Activation. Cell Cycle, 14, 2340-2354. https://doi.org/10.1080/15384101.2015.1049782