全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synergistic Interactions of Soil and Vegetation in Agroforestry Systems in Mitigating Climate Change in Upper East Region, Ghana

DOI: 10.4236/ajcc.2024.132008, PP. 140-162

Keywords: Climate Change, Carbon Sequestration, Agroforestry, Photosynthesis, Nutrient Mining, Synergistic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate change has been a global pandemic with its adverse impacts affecting environments and livelihoods. This has been largely attributed to anthropogenic activities which generate large amounts of Green House Gases (GHGs), notably carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) among others. In the Upper East of Ghana, climate change manifests in erratic rainfalls, drought, high temperatures, high wind speeds, high intensity rainfall, windstorms, flooding, declining vegetation cover, perennial devastating bushfires etc. Practices such as burning farm residues, use of dung as fuel for cooking, excessive application of nitrogenous fertilizers, and deforestation that are prevalent in the region exacerbate the situation. Although, efforts made by governmental and none-governmental organizations to mitigate climate change through afforestation, agroforestry and promotion of less fuelwood consuming cook stoves, land management practices antagonize these efforts as more CO2 is generated than the carrying capacity of vegetation in the region. Research findings have established the role of trees and soil in carbon sequestration in mitigating climate. However, there is limited knowledge on how the vegetation and soil in agroforestry interplay in mitigation climate change. It is against this background that this review seeks to investigate how vegetation and soil in an agroforestry interact synergistically to sequester carbon and contribute to mitigating climate change in Upper East region of Ghana. In this review, it was discovered soil stored more carbon than vegetation in an agroforestry system and is much effective in mitigating climate change. It was found out that in order to make soil and vegetation in an agroforestry system interact synergistically to effectively mitigate climate change, Climate Smart Agriculture practice which integrates trees, and perennials crops effectively mitigates climate. The review concluded that tillage practices that ensure retention and storage of soil organic carbon (SOC) could be much effective in carbon sequestration in the Savannah zones and could be augmented with vegetation to synergistically mitigate climate change in the Upper East region of Ghana.

References

[1]  Acharya, S., Mahapatra, N., & Ghosal, M. K. (2014). Draft Requirement of Bullock Drawn Mouldboard Ploughs in Sandy Loam Soil of Coastal Odisha. Indian Journal of Dryland Agricultural Research and Development, 29, 89-92.
https://doi.org/10.5958/2231-6701.2014.01201.9
[2]  Albrecht, A., & Kandji, S. T. (2003). Carbon Sequestration in Tropical Agroforestry Systems. Agriculture, Ecosystems and Environment, 99, 15-27.
https://doi.org/10.1016/S0167-8809(03)00138-5
[3]  Al-Kaisi, M. M., Kruse, M. L., & Sawyer, J. E. (2008). Effect of Nitrogen Fertilizer Application on Growing Season Soil Carbon Dioxide Emission in a Corn-Soybean Rotation. Journal of Environmental Quality, 37, 325-332.
https://doi.org/10.2134/jeq2007.0240
[4]  Amoako, E. E., Kranjac-Berisavljevic, G., Ballu Duwieja, A., Misana, S., & Zizinga, A. (2018). Effect of the Seasonal Burning on Tree Species in the Guinea Savanna Woodland, Ghana: Implications for Climate Change Mitigation. Applied Ecology and Environmental Research, 16, 1935-1949.
https://doi.org/10.15666/aeer/1602_19351949
[5]  Arehart, J. H., Hart, J., Pomponi, F., & D’Amico, B. (2021). Carbon Sequestration and Storage in the Built Environment. Sustainable Production and Consumption, 27, 1047-1063.
https://doi.org/10.1016/j.spc.2021.02.028
[6]  Asbjornsen, H., Hernandez-Santana, V., Liebman, M., Bayala, J., Chen, J., Helmers, M., Ong, C. K., & Schulte, L. A. (2013). Targeting Perennial Vegetation in Agricultural Landscapes for Enhancing Ecosystem Services. Renewable Agriculture and Food Systems, 29, 101-125.
https://doi.org/10.1017/S1742170512000385
[7]  Atangana, A., Khasa, D., Chang, S., Degrande, A., Atangana, A., Khasa, D., & Degrande, A. (2014). Phytoremediation in Tropical Agroforestry (pp. 343-351). Springer.
https://doi.org/10.1007/978-94-007-7723-1_19
[8]  Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P. A., Tao, B., Hui, D., Yang, J., & Matocha, C. (2019). Responses of Soil Carbon Sequestration to Climate-Smart Agriculture Practices: A Meta-Analysis. Global Change Biology, 25, 2591-2606.
https://doi.org/10.1111/gcb.14658
[9]  Bedada, A. B., & Goshu, T. A. (2021). Farmland Trees for the Improvement of Crop Yield, Soil Fertilities, Soil and Water Conservation, and Carbon Sequestration: A Review. Agricultural Science Research Journal, 11, 154-168.
[10]  Betts, R. A., Falloon, P. D., Goldewijk, K. K., & Ramankutty, N. (2007). Biogeophysical Effects of Land Use on Climate: Model Simulations of Radiative Forcing and Large Scale Temperature Change. Agricultural and Forest Meteorology, 142, 216-233.
https://doi.org/10.1016/j.agrformet.2006.08.021
[11]  Birouste, M., Kazakou, E., Blanchard, A., & Roumet, C. (2012). Plant Traits and Decomposition: Are the Relationships for Roots Comparable to Those for Leaves? Annals of Botany, 109, 463-472.
https://doi.org/10.1093/aob/mcr297
[12]  Brady, N. C., & Weil, R. R. (1996). The Nature and Properties of Soils.
[13]  Brakas, S. G., & Aune, J. B. (2011). Biomass and Carbon Accumulation in Land Use Systems of Claveria, the Philippines. In B. Mohan Kumar, & P. K. Ramachandran Nair (Eds.), Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges (pp. 163-175). Springer.
https://doi.org/10.1007/978-94-007-1630-8_9
[14]  Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R., & Dulazi, A. A. (2015). Conservation Tillage Impacts on Soil, Crop and the Environment. International Soil and Water Conservation Research, 3, 119-129.
https://doi.org/10.1016/j.iswcr.2015.05.002
[15]  Choudhury, S. G., Srivastava, S., Singh, R., Chaudhari, S. K., Sharma, D. K., Singh, S. K., & Sarkar, D. (2014). Tillage and Residue Management Effects on Soil Aggregation, Organic Carbon Dynamics and Yield Attribute in Rice-Wheat Cropping System under Reclaimed Sodic Soil. Soil and Tillage Research, 136, 76-83.
https://doi.org/10.1016/j.still.2013.10.001
[16]  Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications, 11, 343-355.
https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2
[17]  Das, B., Khara, U., & Bandyopadhyay, A. (2012). Main Physical Causes of Climate Change and Global Warming—A General Overview.
[18]  Dias Rodrigues, C. I., Brito, L. M., & Nunes, L. J. R. (2023). Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Systems, 7, Article No. 64.
https://doi.org/10.3390/soilsystems7030064
[19]  Dignac, M. F., Derrien, D., BarrÉ, P., Barot, S., CÉCillon, L., Chenu, C., & Basile-Doelsch, I. (2017). Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review. Agronomy for Sustainable Development, 37, 1-27.
https://doi.org/10.1007/s13593-017-0421-2
[20]  Dixon, R. K., & Krankina, O. N. (1993). Forest Fires in Russia: Carbon Dioxide Emissions to the Atmosphere. Canadian Journal of Forest Research, 23, 700-705.
https://doi.org/10.1139/x93-091
[21]  Eglin, T., Ciais, P., Piao, S., BarrÉ, P., Bellassen, V., Cadule, P., Chenu, C., Gasser, T., Koven, C., Reichstein, M., & Smith, P. (2010). Historical and Future Perspectives of Global Soil Carbon Response to Climate and Land-Use Changes. Tellus B, 62, 700-718.
https://doi.org/10.1111/j.1600-0889.2010.00499.x
[22]  Euliss, N. H., Smith, L. M., Wilcox, D. A., & Browne, B. A. (2008). Linking Ecosystem Processes with Wetland Management Goals: Charting a Course for a Sustainable Future. Wetlands, 28, 553-562.
https://doi.org/10.1672/07-154.1
[23]  Fagodiya, R. K., Verma, K., & Verma, V. K. (2023). Climate Resilient Agricultural Practices for Mitigation and Adaptation of Climate Change. In Social Science Dimensions of Climate Resilient Agriculture (pp. 1-14). ICAR-National Dairy Research Institute.
[24]  FAO and ITPS (2015). Status of the World’s Soils Resources.
[25]  Feliciano, D., Ledo, A., Hillier, J., & Nayak, D. (2018). Which Agroforestry Options Give the Greatest Soil and above Ground Carbon Benefits in Different World Regions? Agriculture, Ecosystems and Environment, 254, 117-129.
https://doi.org/10.1016/j.agee.2017.11.032
[26]  Ferchaud, F., Vitte, G., & Mary, B. (2016). Changes in Soil Carbon Stocks under Perennial and Annual Bioenergy Crops. Global Change Biology Bioenergy, 8, 290-306.
https://doi.org/10.1111/gcbb.12249
[27]  Follett, R. F. (2001). Soil Management Concepts and Carbon Sequestration in Crop-Land Soils. Soil and Tillage Research, 61, 77-92.
https://doi.org/10.1016/S0167-1987(01)00180-5
[28]  Freschet, G. T., Cornwell, W. K., Wardle, D. A., Elumeeva, T. G., Liu, W., Jackson, B. G., & Cornelissen, J. H. (2013). Linking Litter Decomposition of Above-and Below-Ground Organs to Plant-Soil Feedbacks Worldwide. Journal of Ecology, 101, 943-952.
https://doi.org/10.1111/1365-2745.12092
[29]  Gebre, A. B. (2016). Potential Effects of Agroforestry Practices on Climate Change Mitigation and Adaptation Strategies: A Review. Journal of Natural Sciences Research, 6, 83-89.
[30]  Gentles, S. J., Charles, C., Ploeg, J., & McKibbon, K. A. (2015). Sampling in Qualitative Research: Insights from an Overview of the Methods Literature. The Qualitative Report, 20, 1772-1789.
https://doi.org/10.46743/2160-3715/2015.2373
[31]  Ghana Statistical Service (GSS) (2014). Ghana Living Standards Survey Round 6 (GLSS 6), Main Report, 2012/2013. GSS.
[32]  González-Sánchez, E. J., Ordóñez-Fernández, R., Carbonell-Bojollo, R., Veroz-González, O., & Gil-Ribes, J. A. (2012). Meta-Analysis on Atmospheric Carbon Capture in Spain through the Use of Conservation Agriculture. Soil and Tillage Research, 122, 52-60.
https://doi.org/10.1016/j.still.2012.03.001
[33]  Govaerts, B., Verhulst, N., Castellanos-Navarrete, A., Sayre, K. D., Dixon, J., & Dendooven, L. (2009). Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality. Critical Reviews in Plant Sciences, 28, 97-122.
https://doi.org/10.1080/07352680902776358
[34]  Guo, L. B., & Gifford, R. M. (2002). Soil Carbon Stocks and Land Use Change: A Meta-Analysis. Global Change Biology, 8, 345-360.
https://doi.org/10.1046/j.1354-1013.2002.00486.x
[35]  Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Progress in Physical Geography, 29, 189-217.
https://doi.org/10.1191/0309133305pp443ra
[36]  Haddaway, N. R., Hedlund, K., & Jackson, L. E. (2017). How Does Tillage Intensity Affect Soil Organic Carbon? A Systematic Review. Environmental Evidence, 6, Article No. 30.
https://doi.org/10.1186/s13750-017-0108-9
[37]  Hemida, M., Yasin, E. H., Kheiry, M. A., Hammad, Z. M., & Vityi, A. (2023). Assessment of Taungya Agroforestry System in Dryland Forests Rehabilitation in Sudan. Journal of Degraded and Mining Lands Management, 10, 4495-4507.
https://doi.org/10.15243/jdmlm.2023.103.4495
[38]  Holland, J. M. (2004). The Environmental Consequences of Adopting Conservation Tillage in Europe: Reviewing the Evidence. Agriculture, Ecosystems & Environment, 103, 1-25.
https://doi.org/10.1016/j.agee.2003.12.018
[39]  Intergovernmental Panel on Climate Change (IPCC) (2007). Fourth Assessment Report. Climate Change (AR4).
http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml
[40]  Jarecki, M. K., & Lal, R. (2003). Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 22, 471-502.
https://doi.org/10.1080/713608318
[41]  Jose, S. (2009). Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. Agroforestry Systems, 76, 1-10.
https://doi.org/10.1007/s10457-009-9229-7
[42]  Kandji, S. T., Verchot, L.V., Mackensen, J., Boye, A., Van, N.M., et al. (2006). Opportunities for Linking Climate Change Adaptation and Mitigation through Agroforestry Systems. In D. P. Garrity, A. Okono, M. Grayson, & S. Parrott (Eds.), World Agroforestry into the Future (pp. 113-121). World Agroforestry Centre (ICRAF).
[43]  Kassam, A., Friedrich, T., Derpsch, R., Lahmar, R., Mrabet, R., Basch, G., & Serraj, R. (2012). Conservation Agriculture in the Dry Mediterranean Climate. Field Crops Research, 132, 7-17.
https://doi.org/10.1016/j.fcr.2012.02.023
[44]  Kirschbaum, M. U. (2000). Will Changes in Soil Organic Carbon Act as a Positive or Negative Feedback on Global Warming? Biogeochemistry, 48, 21-51.
https://doi.org/10.1023/A:1006238902976
[45]  Krankina, O. N., & Dixon, R. K. (1994). Forest Management Options to Conserve and Sequester Terrestrial Carbon in the Russian Federation. World Resource Review, 6, 88-101.
[46]  Kumar, B. M., & Nair, P. K. R. (2011). Carbon Sequestration in Agroforestry Systems: Opportunities and Challenges. Springer.
https://doi.org/10.1007/978-94-007-1630-8
[47]  Lal, R. (2003). Soil Erosion and the Global Carbon Budget. Environment International, 29, 437-450.
https://doi.org/10.1016/S0160-4120(02)00192-7
[48]  Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304, 1623-1627.
https://doi.org/10.1126/science.1097396
[49]  Lal, R. (2011). Soil Carbon and Climate Change. In D. Hillel, & C. Rosenzweig (Eds.), Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation (pp. 287-305). World Scientific Publishing.
https://doi.org/10.1142/9781848166561_0016
[50]  Lal, R., Lorenz, K., Hüttl, R., Schneider, B., & Von Braun, J. (2013). Ecosystem Services and Carbon Sequestration in the Biosphere. Springer.
https://doi.org/10.1007/978-94-007-6455-2
[51]  Lamb, W. F., Wiedmann, T., Pongratz, J., Rew, R., Crippa, M., Olivier, J. G., & Minx, J. (2021). A Review of Trends and Drivers of Greenhouse Gas Emissions by Sector from 1990 to 2018. Environmental Research Letters, 16, Article ID: 073005.
https://doi.org/10.1088/1748-9326/abee4e
[52]  Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I. G. P., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant Diversity Increases Soil Microbial Activity and Soil Carbon Storage. Nature Communications, 6, Article No. 6707.
https://doi.org/10.1038/ncomms7707
[53]  Lasocki, T. J. (2001). Climate Change Mitigation through Forestry: Theory and Practice. Journal of Sustainable Forestry, 14, 147-166.
https://doi.org/10.1300/J091v14n02_09
[54]  Leakey, R. R. B. (1996). Definition of Agroforestry Revisited. Agroforestry Today, 8, 5-7.
https://doi.org/10.1016/B978-0-12-805356-0.00001-5
[55]  Ledo, A., Smith, P., Zerihun, A., Whitaker, J., Vicente-Vicente, J. L., Qin, Z. C., McNamara, N. P., Zinn, Y. L., Llorente, M., Liebig, M., Kuhnert, M., Dondini, M., Don, A., Diaz-Pines, E., Datta, A., Bakka, H., Aguilera, E., & Hillier, J. (2020). Changes in Soil Organic Carbon under Perennial Crops. Global Change Biology, 26, 4158-4168.
https://doi.org/10.1111/gcb.15120
[56]  Lorenz, K., & Lal, R. (2014). Soil Organic Carbon Sequestration in Agroforestry Systems. A Review. Agronomy for Sustainable Development, 34, 443-454.
https://doi.org/10.1007/s13593-014-0212-y
[57]  Lugo, A. E., & Brown, S. (1993). Management of Tropical Soils as Sinks or Sources of Atmospheric Carbon. Plant and Soil, 149, 27-41.
https://doi.org/10.1007/BF00010760
[58]  Luo, Y. Q., Zhao, X.-Y., Wang, T., & Li, Y.-Q. (2017). Characteristics of the Plant-Root System and Its Relationships with Soil Organic Carbon and Total Nitrogen in a Degraded Sandy Grassland. Acta Prataculturae Sinica, 26, 200-206.
[59]  Ma, Z., Chen, H. Y., Bork, E. W., Carlyle, C. N., & Chang, S. X. (2020). Carbon Accumulation in Agroforestry Systems Is Affected by Tree Species Diversity, Age and Regional Climate: A Global Meta-Analysis. Global Ecology and Biogeography, 29, 1817-1828.
https://doi.org/10.1111/geb.13145
[60]  Mahajan, A., Sojitra, A., Gupta, H., & Arora, D. (2021). Carbon Sequestration in Forest and Agroforestry—A Global Perspective. In Advances in Forestry and Agro-Forestry (p. 437). Stella International Publication.
[61]  Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, M. (2014). Achieving Mitigation and Adaptation to Climate Change through Sustainable Agroforestry Practices in Africa. Current Opinion in Environmental Sustainability, 6, 8-14.
https://doi.org/10.1016/j.cosust.2013.09.002
[62]  McDaniel, M. D., Saha, D., Dumont, M. G., HernÁNdez, M., & Adams, M. A. (2019). The Effect of Land-Use Change on Soil CH4 and N2O Fluxes: A Global Meta-Analysis. Ecosystems, 22, 1424-1443.
https://doi.org/10.1007/s10021-019-00347-z
[63]  Meena, B. L., Fagodiya, R. K., Prajapat, K., Dotaniya, M. L., Kaledhonkar, M. J., Sharma, P. C., & Kumar, S. (2018). Legume Green Manuring: An Option for Soil Sustainability. In R. S. Meena, et al. (Eds.), Legumes for Soil Health and Sustainable Management (387-408). Springer.
https://doi.org/10.1007/978-981-13-0253-4_12
[64]  Meena, R. S., Kumar, S., & Yadav, G. S. (2020). Soil Carbon Sequestration in Crop Production. In R. S. Meena (Ed.), Nutrient Dynamics for Sustainable Crop Production (pp. 1-39). Springer.
https://doi.org/10.1007/978-981-13-8660-2_1
[65]  Mehra, P., Baker, J., Sojka, R. E., Bolan, N., Desbiolles, J., Kirkham, M. B., & Gupta, R. (2018). A Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics. Advances in Agronomy, 150, 185-230.
https://doi.org/10.1016/bs.agron.2018.03.002
[66]  Mendez-Millan, M., Dignac, M. F., Rumpel, C., Rasse, D. P., Bardoux, G., & Derenne, S. (2012). Contribution of Maize Root Derived C to Soil Organic Carbon throughout an Agricultural Soil Profile Assessed by Compound Specific 13C Analysis. Organic Geochemistry, 42, 1502-1511.
https://doi.org/10.1016/j.orggeochem.2011.02.008
[67]  Mir, K. A., Purohit, P., & Mehmood, S. (2017). Sectoral Assessment of Greenhouse Gas Emissions in Pakistan. Environmental Science and Pollution Research, 24, 27345-27355.
https://doi.org/10.1007/s11356-017-0354-y
[68]  Murthy, I. K., Gupta, M., Tomar, S., Munsi, M., Tiwari, R., Hegde, G. T., & Ravindranath, N. H. (2013). Carbon Sequestration Potential of Agroforestry Systems in India. Journal of Earth Science & Climatic Change, 4, 1-7.
https://doi.org/10.4172/2157-7617.1000131
[69]  Nair, P. K. R., & Garrity, D. (2012). AgroforestryThe Future of Global Land Use. Springer.
https://doi.org/10.1007/978-94-007-4676-3
[70]  Nair, P. R., Kumar, B. M., Nair, V. D., Nair, P. R., Kumar, B. M., & Nair, V. D. (2021). Definition and Concepts of Agroforestry. In P. K. R. Nair, B. M. Kumar, & V. D. Nair (Eds.), An Introduction to Agroforestry: Four Decades of Scientific Developments (pp. 21-28). Springer.
https://doi.org/10.1007/978-3-030-75358-0_2
[71]  Nair, P. R., Nair, V. D., Kumar, B. M., & Showalter, J. M. (2010). Carbon Sequestration in Agroforestry Systems. In Advances in Agronomy (Vol. 108, pp. 237-307). Elsevier.
https://doi.org/10.1016/S0065-2113(10)08005-3
[72]  Olson, K. R., Al-Kaisi, M., Lal, R., & Cihacek, L. (2016). Impact of Soil Erosion on Soil Organic Carbon Stocks. Journal of Soil and Water Conservation, 71, 61A-67A.
https://doi.org/10.2489/jswc.71.3.61A
[73]  Ontl, T. A., & Schulte, L. A. (2012). Soil Carbon Storage. Nature Education Knowledge, 3, 35.
[74]  Parrotta, J. A. (1999). Productivity, Nutrient Cycling, and Succession in Single-and Mixed-Species Plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico. Forest Ecology and Management, 124, 45-77.
https://doi.org/10.1016/S0378-1127(99)00049-3
[75]  Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-Smart Soils. Nature, 532, 49-57.
https://doi.org/10.1038/nature17174
[76]  Paustian, K., Six, J., Elliott, E. T., & Hunt, H. W. (2000). Management Options for Reducing CO2 Emissions from Agricultural Soils. Biogeochemistry, 48, 147-163.
https://doi.org/10.1023/A:1006271331703
[77]  Powlson, D. S., Whitmore, A. P., & Goulding, K. W. (2011). Soil Carbon Sequestration to Mitigate Climate Change: A Critical Re-Examination to Identify the True and the False. European Journal of Soil Science, 62, 42-55.
https://doi.org/10.1111/j.1365-2389.2010.01342.x
[78]  Pries, C. E. H., Sulman, B. N., West, C., O’Neill, C., Poppleton, E., Porras, R. C., & Torn, M. S. (2018). Root Litter Decomposition Slows with Soil Depth. Soil Biology and Biochemistry, 125, 103-114.
https://doi.org/10.1016/j.soilbio.2018.07.002
[79]  Rabbi, S. F., Tighe, M., Cowie, A., Wilson, B. R., Schwenke, G., Mcleod, M., & Baldock, J. (2014). The Relationships between Land Uses, Soil Management Practices, and Soil Carbon Fractions in South Eastern Australia. Agriculture, Ecosystems and Environment, 197, 41-52.
https://doi.org/10.1016/j.agee.2014.06.020
[80]  Ramachandran Nair, P. K., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a Strategy for Carbon Sequestration. Journal of Plant Nutrition and Soil Science, 172, 10-23.
https://doi.org/10.1002/jpln.200800030
[81]  Rao, K., Verchot, L., & Laarman, J. (2007). Adaptation to Climate Change through Sustainable Management and Development of Agroforestry Systems. Journal of SAT Agricultural Research, 4, 1-30.
[82]  Rastogi, M., Singh, S., & Pathak, H. (2002). Emission of Carbon Dioxide from Soil. Current Science, 82, 510-517.
https://doi.org/10.4141/S02-SI
[83]  Reicosky, D. C. (1995). Impact of Tillage on Soil as a Carbon Sink. In Farming for a Better Environment (pp. 50-53). Soil and Water Conservation Society.
[84]  Saha, R., & Jha, P. (2012). Carbon Sequestration Potentials of Agroforestry Systems under Climate Change Scenario—Brief Review with Special Emphasis on North-Eastern Hill Regions. Journal of Agricultural Physics, 12, 100-106.
[85]  Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global Soil Carbon: Understanding and Managing the Largest Terrestrial Carbon Pool. Carbon Management, 5, 81-91.
https://doi.org/10.4155/cmt.13.77
[86]  Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., & Townsend, A. R. (1994). Climatic, Edaphic, and Biotic Controls over Storage and Turnover of Carbon in Soils. Global Biogeochemical Cycles, 8, 279-293.
https://doi.org/10.1029/94GB00993
[87]  Schlesinger, W. H. (1995). Soil Respiration and Changes in Soil Carbon Stocks. In G. M. Woodwell, & F. T. Mackenzie (Eds.), Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming (pp. 159-168). Oxford University Press.
https://doi.org/10.1093/oso/9780195086409.003.0010
[88]  Schroeder, P. (1994). Carbon Storage Benefits of Agroforestry Systems. Agroforestry Systems, 27, 89-97.
https://doi.org/10.1007/BF00704837
[89]  Seitz, S., Goebes, P., Puerta, V. L., Pereira, E. I. P., Wittwer, R., Six, J., & Scholten, T. (2019). Conservation Tillage and Organic Farming Reduce Soil Erosion. Agronomy for Sustainable Development, 39, Article No. 4.
https://doi.org/10.1007/s13593-018-0545-z
[90]  Shi, L., Feng, W., Xu, J., & Kuzyakov, Y. (2018). Agroforestry Systems: Meta-Analysis of Soil Carbon Stocks, Sequestration Processes, and Potential. Land Degradation and Development, 29, 3886-3897.
https://doi.org/10.1002/ldr.3136
[91]  Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 70, 555-569.
https://doi.org/10.2136/sssaj2004.0347
[92]  Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy, 105, 47-82.
https://doi.org/10.1016/S0065-2113(10)05002-9
[93]  Sommer, R., Ryan, J., Masri, S., Singh, M., & Diekmann, J. (2011). Effect of Shallow Tillage, Moldboard Plowing, Straw Management and Compost Addition on Soil Organic Matter and Nitrogen in a Dryland Barley/Wheat-Vetch Rotation. Soil and Tillage Research, 115, 39-46.
https://doi.org/10.1016/j.still.2011.06.003
[94]  Toknok, B. (2013). Carbon Stock of Agroforestry Systems at Adjacent Buffer Zone of Lore Lindu National Park, Central Sulawesi. Journal of Tropical Soils, 16, 123-128.
https://doi.org/10.5400/jts.2011.v16i2.123-128
[95]  Torn, M. S., Swanston, C. W., Castanha, C., & Trumbore, S. E. (2009). Storage and Turnover of Organic Matter in Soil. In N. Senesi, et al. (Eds.), Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems (pp. 219-272). John Wiley & Sons, Inc.
https://doi.org/10.1002/9780470494950.ch6
[96]  Torquebiau, E. F. (2000). A Renewed Perspective on Agroforestry Concepts and Classification. Comptes Rendus De L’Academie Des Sciences-Series III-Sciences De La Vie, 323, 1009-1017.
https://doi.org/10.1016/S0764-4469(00)01239-7
[97]  Unger, P. W., Stewart, B. A., Parr, J. F., & Singh, R. P. (1991). Crop Residue Management and Tillage Methods for Conserving Soil and Water in Semi-Arid Regions. Soil and Tillage Research, 20, 219-240.
https://doi.org/10.1016/0167-1987(91)90041-U
[98]  United Nations (2011). Global Drylands: A UN System-Wide Responses. United Nation Environment Management Group.
[99]  Unruh, J. D., Houghton, R. A., & Lefebvre, P. A. (1993). Carbon Storage in Agroforestry: An Estimate for Sub-Saharan Africa. Climate Research, 3, 39-52.
https://doi.org/10.3354/cr003039
[100]  Villarino, S. H., Pinto, P., Jackson, R. B., & Piñeiro, G. (2021). Plant Rhizodeposition: A Key Factor for Soil Organic Matter Formation in Stable Fractions. Science Advances, 7, Eabd3176.
https://doi.org/10.1126/sciadv.abd3176
[101]  Virto, I., BarrÉ, P., Burlot, A., & Chenu, C. (2012). Carbon Input Differences as the Main Factor Explaining the Variability in Soil Organic C Storage in No-Tilled Compared to Inversion Tilled Agrosystems. Biogeochemistry, 108, 17-26.
https://doi.org/10.1007/s10533-011-9600-4
[102]  Von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K., & Kalbitz, K. (2008). Stabilization Mechanisms of Organic Matter in Four Temperate Soils: Development and Application of a Conceptual Model. Journal of Plant Nutrition and Soil Science, 171, 111-124.
https://doi.org/10.1002/jpln.200700047
[103]  Warming, C. R. F. T. G., & Rays, G. C. (2011). INCCA: Indian Network for Climate Change Assessment.
[104]  Wilson, G. V., Dabney, S. M., McGregor, K. C., & Barkoll, B. D. (2004). Tillage and Residue Effects on Runoff and Erosion Dynamics. Transactions of the ASAE, 47, 119-128.
[105]  Winjum, J. K., Dixon, R. K., & Schroeder, P. E. (1992). Estimating the Global Potential of Forest and Agroforest Management Practices to Sequester Carbon. Water, Air, and Soil Pollution, 64, 213-227.
[106]  Zhu, X., Hu, Y., Wang, W., & Wu, D. (2019). Earthworms Promote the Accumulation of Maize Root-Derived Carbon in a Black Soil of Northeast China, Especially in Soil from Long-Term No-Till. Geoderma, 340, 124-132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133