全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂离子电池交流阻抗谱应用
Application of Impedance Spectroscopy for Lithium Battery

DOI: 10.12677/japc.2024.132032, PP. 273-283

Keywords: 三元锂离子电池,电化学阻抗谱,弛豫时间分布
Ternary Lithium Ion Battery
, Electrochemical Impedance Spectroscopy, Relaxation Time Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着环境保护意识的增强,锂离子电池作为一种车用动力电池得到了广泛应用。然而,如何准确测试电池的荷电状态、识别过充、过放和内部短路等问题仍然是一个挑战。本研究采用电化学阻抗谱(Electrochemical Impedance Spectroscopy, EIS)技术探究了有效评估三元锂电池状态的方法。本研究在不同荷电状态(State of Charge, SOC)条件下对电池进行了EIS测试,并在过充、过放以及内部短路情况下进行了相应的电化学阻抗实验,从而得出结论,验证了EIS用于估计各种电池状态以及诊断电池故障的适用性。此外,作为EIS的补充手段,本研究还采用了弛豫时间分布法对不同状态下的电池进行了测试,并将结果与EIS测试进行了对比,以得出最终的结论。
With the increasing awareness of environmental protection, lithium-ion batteries have been widely used as an automotive power battery. However, it is still a challenge to accurately test the charge state, health state, and identify overcharge, overdischarge, and internal short circuit of the battery. In this study, the Electrochemical Impedance Spectroscopy (EIS) technique was used to explore the methods to effectively assess the state of Li-ion ternary batteries. In this study, EIS tests were conducted on the battery under different SOC conditions, and the corresponding electrochemical impedance experiments were performed under overcharging, overdischarging, and internal short-circuit conditions, which led to the conclusion that the applicability of EIS for estimating various battery states and diagnosing battery faults was verified. In addition, as a complementary means to EIS, the relaxation time distribution method was used in this study to test batteries in different states, and the results were compared with the EIS tests to draw final conclusions.

References

[1]  田美娥. 电动车发展趋势[J]. 轻型汽车技术, 2010(11): 4-6.
[2]  陈清泉, 孙立清. 电动汽车的现状和发展趋势[J]. 科技导报, 2005, 23(4): 24-28.
[3]  张世超. 锂离子电池产业现状与研究开发热点[J]. 产业透视, 2004(1): 46-47.
[4]  崔晓莉, 江志裕. 交流阻抗谱的表示及应用[J]. 上海师范大学学报: 自然科学版, 2001, 30(4): 53-54.
[5]  宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35(4): 1-7.
[6]  黄曼, 陈昀. 水热法制备纳米片状氧化镍及其对葡萄糖的电化学检测[J]. 中国测试, 2016, 42(11): 44-47.
[7]  李煜宇, 李真, 黄云辉. 电化学分析在新能源电池研究中的应用概述[J]. 分析科学学报, 2019, 35(6): 711-722.
[8]  牛凯, 李静如, 李旭晨, 马晶, 刘燊, 李浩, 张文堤, 彭鹏, 陈杰威, 刘乐浩, 姜冰, 褚立华, 李美成. 电化学测试技术在锂离子电池中的应用研究[J]. 中国测试, 2020, 46(7): 90-101.
[9]  曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002: 1-20.
[10]  Barsoukov, E. and Ross Macdonald, J. (2005) Appendix: Abbreviations and Definitions of Models. In: Barsoukov, E. and Ross Macdonald, J., Eds., Impedance Spectroscopy: Theory, Experiment, and Applications, Wiley, New York, 539.
https://doi.org/10.1002/0471716243.app1
[11]  Thomas, M.G.S.R., et al. (1985) AC Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li1??xCoO2. Journal of the Electrochemical Society, 132, 1521-1528.
https://doi.org/10.1149/1.2114158
[12]  Barsoukov, E., et al. (2003) Comparison of Kinetic Properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by Impedance Spectroscopy. Solid State Ionics, 161, 19-29.
https://doi.org/10.1016/S0167-2738(03)00150-4
[13]  马厚义, 吴晓娟, 李桂秋, 等. 电化学阻抗谱测试中的稳定性和线性问题[J]. 山东大学学报: 自然科学版, 2000, 35(1): 79-80.
[14]  唐殊. 基于EIS的锂电池阻抗模型研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2014.
[15]  田晓辉. 锂离子电池SOC预测方法应用研究[D]: [硕士学位论文]. 洛阳: 河南科技大学, 2009: 5-6.
[16]  Nagasubramanian, G. (2001) Electrical Characteristics of 18650 Li-Ion Cells at Low Temperatures. Journal of Applied Electrochemistry, 31, 99-104.
https://doi.org/10.1023/A:1004113825283
[17]  Schichlein, H., Miller, A.C., Voigts, M., et al. (2002) Deconvolution of Electrochemical Impedance Spectra for the Identification of Electrode Reaction Mechanisms in Solid Oxide Fuel Cells. Journal of Applied Electrochemistry, 32, 875-882.
https://doi.org/10.1023/A:1020599525160
[18]  王晟, 闫帅, 李浩秒, 王康丽, 蒋凯. 基于正则化方法的电池阻抗谱弛豫时间分布解析[J]. 中国电机工程学报, 2022, 42(9): 3177-3187.
https://doi.org/10.13334/j.0258.8013.pcsee.201844
[19]  王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学, 2020, 26(5): 607-627.
[20]  Li, X., Ahmadi, M., Collins, L., et al. (2019) Deconvolving Distribution of Relaxation Times, Resistances and Inductance from Electrochemical Impedance Spectroscopy via Statistical Model Selection: Exploiting Structural-Sparsity Regularization and Data-Driven Parameter Tuning. Electrochimica Acta, 313, 570-583.
[21]  Zhou, X., Huang, J., Pan, Z.Q. and Ouyang, M.G. (2019) Impedance Characterization of Lithium-Ion Batteries Aging under High Temperature Cycling: Importance of Electrolyte-Phase Diffusion. Journal of Power Sources, 426, 216-222.
https://doi.org/10.1016/j.jpowsour.2019.04.040
[22]  Huang, J., Li, Z., Liaw, B.Y. and Zhang, J. (2016) Graphical Analysis of Electrochemical Impedance Spectroscopy Data in Bode and Nyquist Representations. Journal of Power Sources, 309, 82-98.
https://doi.org/10.1016/j.jpowsour.2016.01.073
[23]  Endler, C., Lconide, A., Weber, A., et al. (2010) Time-Dependent Electrode Performance Changes in Intermediate Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 157, B292-B298.
https://doi.org/10.1149/1.3270047
[24]  Schmidt, J.P., Chrobak, T., Ender, M., et al. (2011) Studies on LiFePO4 as Cathode Material Using Impedance Spectroscopy. Journal of Power Source, 196, 5342-5348.
https://doi.org/10.1016/j.jpowsour.2010.09.121
[25]  Schmidt, J.P., Berg, P., Schinleber, M., et al. (2013) The Distribution of Relaxation Times as Basis for Generalized Time-Domain Models for Li-Ion Batteries. Journal of Power Source, 221, 70-77.
https://doi.org/10.1016/j.jpowsour.2012.07.100

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133